

NSTRUCTION MANNUAL SECTION

We are confident that you will be entirely satisfied with your 430 MHz Transceiver Model C78. Our very strict quality control and inspecion ensure that each transceiver unit leaves the factory in perfect condition. If the unit is damaged or fails to operate properly, immediately contact your dealer.

To obtain the best performance and longest use from your transceiver, study these instructions carefully.

1. PRECAUTIONS

- ANTENNA

1. When you wish to use your C78 Transceiver as a portable operation, attach the supplied antenna to the BNC antenna jack on the front panel of the unit.
2. For mobile or base-station operation, disconnect the supplied antenna from its front jack and attach an appropriate external antenna to the jack on the rear of the unit. If an external antenna is used with the supplied antenna attached to the unit, in parallel unsatisfactory communication may result.

- POWER SUPPLY

When inserting battery packs in the unit, check their polarity.
The required number of battery cells depends on battery type: ten (10) rechargeable Ni-Cad battery cells (1.2 V each) or nine (9) UM-3 manganese or alkaline battery cells. External power sources are acceptable for mobile or base-station operation. For more details, see items (6) and (7) in paragraph 4.

- INSTALLATION NOTES

1. Install your transceiver in a dry, dust-free and well-ventialted place. The unit should not be subjected to extremely high temperatures or humidity. It must not, under any circumstances, be exposed to direct sunlight.
2. Provide adequate space behind and under the unit for free circulation of air
3. In a mobile installation, exerçise special care to allow enough space behind the unit for adequate heat dissipation from the heat sink. Take measures to ensure that the unit is not subjected to excessive vibrations or shocks during operation.

2 FEATURES

The C78 Transceiver incorporates sophisticated microcomputer-assistance. The built-in microcomputer memorizes, computes and makes decisions for quick and precise channel frequency control.

The microcomputer provides the following useful features:

1. Memory capacity up to 5 channel fre quencies can be stored arbitrarily.
2. Automatically scans up to five stored chan nel frequencies.
3. The internal offset memory holds a frequency shift span. This makes the C78 for repeater operation.
4. Divides the frequency band of 430 ~ 439 MHz into 10 sub-bands of 1 MHz bandwidth, and scans each 1 MHz sub-band at 25 kHz or 50 kHz intervals.
5. Automatically searches either for busy or vacant channels.
6. Automatically switches frequency scan speed in two steps.
7. Allows channel scan stepping of 25 kHz and 50 kHz spans.
8. The MHz button achieves quick frequency advancement in 1 MHz steps.

- DIGITAL FREQUENCY READOUT USING LIQUID CRYSTAL DISPLAY (LCD)

The C78 employs a 4-digit frequency readout using LCD. The LCD has low power-consump tion, is easy to read even in direct sunlight and thus makes the C78 suitable for outdoor operation.
At night, it is lit by LCD illumination. The digital readout panel also carries memory address and scan indicators and battery save ON/OFF markings for simple operation checks checks.
When the set is tuned to an off-band during cross operation, the frequency readout provides an OFF display instead of a frequency display.

- FUNCTIONAL BENEFITS

- battery saver

The battery saver senses the presence of receiver input signals and automatically reduces the power supply to the unit when it is set up in the reception standby mode. It thus saver battery power by half and can be activated by simple front key operation.

- 400 CHANNELS SELECTABLE

Up to 400 channels can be selected using the noncontact channel selector which has 18 steps per rotation (200 channels at 50 kHz interva and 400 channel at 25 kHz interval).

- MICROPHONE WITH A FREQUENCY UP-DOWN CONTROL

The attached hand microphone is a built-in frequency up-down control for easy and continuous chanel selection.

- OTHER FEATURES

- A single VCO is shared by both the receiver and transmitter.
- APC circuit protects the final transistors against supply voltage variations.
- Audible check tone provided for key and up-down control operation.
- Built-in tone burst generator for 1750 Hz for repeater driving.

3. PANEL FEATURES

- FRONT PANEL FEATURES

1) BNC CONNECTOR

This connector accepts the supplied antenna for portable operation.

(2) POWER/VOLUME CONTROL

This knob serves as both the POWER switch and VOLUME control. Clockwise rotation turns the unit on and then increases receiver output volume.
(3) SQL (SQUELCH) CONTROL

The SQL control is used to suppress annoying FM background noise heard when no input signal is present. Set this control at a point where background noise just disappears.
4) CHANNEL SELECTOR

This selects channel frequencies in 25 or 50 kHz steps. To increase channel frequency turn it clockwise.

5) MEMO ENTRY KEY

Press this key to store the selected channel frequency in the memory. The memory can frequency in the memory. Themory can
store up to 6 frequency data, the 6 th memory address being assigned to an offset memory for repetitive operation.
The offset memory is used to shift channe frequencies for cross operation, by the stored frequency span.
(6) BAT/SAVE

This key, when pressed, activates the internal battery saver to saver battery consumption in the receiver standby mode. While this key is depressed, a small dot appears at the right margin of the frequency readout, indicating that the saver is activated. The battery saver remains inactive when the squelch is off or during scan operation. When activated, power consumption in the reception standby mode is reduced by approximately half.

7 MEMO RCL KEY

This key is used to recall stored channel frequencies. Each time it is pressed, frequency data stored in memory addresses M1 \sim M5 and in the offset memory address are recalled sequentially. The recalled memory address is displayed at the bottom of the frequency readout along with memory mark " M^{\prime} ".
When the offset memory content is recalled, a small dot appears at the top left of the frequency readout along with memory mark " M " displayed at the bottom of the readout.

(8) MHz KEY

This key selects the mega-hertz order of channel frequencies from 340 to 439 MHz in 1 MHz steps. Each time this key is pressed, channel frequency is incremented 1 MHz . When it is pressed and held, channel frequency automatically increases in 1 MHz steps.
(9) SCAN ALL KEY

This key, when pressed, scans up over the currently-selected MHz band in 25 or 50 kHz steps.
(10) CALL

Press this key to transmit a tone burst signal for repeater driving (tone frequency: 1750 Hz).

(11) SCAN MEMO KEY

When this key is pressed, the channel frequencies stored in memory addresses M1 ~ M5 are scanned sequentially (the frequency stored in the offset memory is not scanned). Memory addresses in which no frequency data is present are automatically skipped.

(12) CCL KEY

This key is used to initialize all the unit's operation mode of the unit.

(13) MIC JACK

This jack accepts the supplied microphone.

(14) FREQUENCY READOUT AND MODE

 NDICATORSThis LCD display carries a frequency readout, SCAN, MEMO, BATT/SAVER, and offset memory indicators.
When a frequency of, for example, 433.500 MHz is received, the frequency readout displays the four low-order digits of the frequency as " 3.500 ". In the SCAN mode, indicator " S " is displayed in the marginal area of the display. In the MEMORY mode, indicator " M " and a pertinent memory address of 1 to 5 are displayed at the bottom of the display. When an empty memory address is accessed, indicator " M " blinks. When the offset memory is accessed, a small dot appears at the top left of the display.

(15) METER

The meter checks input signal strength (S), transmission power (RF) and battery voltage. The "meter is switched automatically between S. and RF as the unit is switched from the reception to transmission mode, When you wish to check battery voltage with the meter, set the rear slide switch (19) to the BAT CHECK position.

(16) TX INDICATOR LAMP

This goes on when the unit is set up for the transmission mode.
(17) SCAN MODE SWITCH

The BUSY position of this switch searches for busy channels during channel frequency sanning. The VACANT position searches for vacant channels. In both the BUSY and VACANT positions, channel scanning takes place at high speed ($0.25 \mathrm{sec} / \mathrm{step}$). In the FREE position, channel scanning takes place at low speed ($2.0 \mathrm{sec} /$ step).

(18) RPT SWITCH

This switch selects between the simplex and epeater (R1 and R2) modes.
Position S: For normal simple operation.
Position R1: To shift the transmission frequency upwards by the frequency span stored in the offset memory.
Position R2: To shift the reception frequency upwards by the frequency span stored in the offset memory.

NOTE:

In the R1 and R2 modes, the memory write, recall, and scan modes are inhibited.

(19) LIGHT/BAT CHECK SWITCH

In the LIGHT position, the LCD and meter lamps glow. The BAT CHECK position causes the front meter to function as a battery voltage indicator while all the lamps are left on. The OFF position turns off all lamps.

(21) RESET BUTTON

This switch is used to reset the internal microcomputer to its initial state in the case of a malfunction.
(21) BATTERY COMPARTMENT COVER RETENTION SCREW
To open the battery compartment cover, loosen this screw with a coin.

22 CHARGE SOCKET
This socket accepts a Ni-Cad battery charger (see Fig. 3).

23 EXT. PWR SOCKET

This socket accepts an external DC powersource (13.8 VDC) supplied via the DC adaptor (which is supplied with the unit). See Fig. 3.
(24) ANT RECEPTALCE

This M-type socket accepts an external antenna with an impedance of 50Ω. When an external antenna is to be used, disconnect the supplied antenna from its front socket.

- INTERNAL SWITCHES

(27) CH STEP SWITCH

This switch selects channel frequency scan stepping between 25 and 50 kHz . It is located behind the battery compartment cover.
(28) BACK UP SWITCH

When this switch is on, frequency data stored in the internal memory remains intact even when the power switch on the unit is turned off
If the unit is to be out of use for any length of time, ensure that this switch is off.

- MICROPHONE

(29) UP-DOWN CHANNEL CONTROL BUT. TON
If the button is held down, channel frequency is tepped up or down continuously.

(30) PTT BUTTON

To put the transceiver into the transmission mode, push the PTT button.
To transmit a tone-burst signal for repeater driving, press this button twice consecutively.

4. BEFORE OPERATION

1 INSTALLING BATTERY PACKS

Install the specified battery packs in the unit's battery compartment of the unit as follows:

1. Loosen screw (21) on the rear of the unit with a coin and open the battery compart ment cover (see Fig.).
2. The supplied battery holders are designed to hold 6 and 4 battery cells each. The smaller holder has a dummy cell in it.
3. Use nine manganese or alkaline battery cells (UM-3 1.5 V) with the dummy cell left installed in the smaller holder.
4. Use ten rechargeable Ni-Cad battery cells $(1.2 \mathrm{~V}$) with the dummy cell removed from the smaller battery holder
5. After mounting batteries in the battery holders, install the holders in the unit's battery compartment as illustrated below. Close the compartment lid and tighten screw (21) with a coin.

NOTE:

When using UM-3 battery cells (1.5 V), leave the dummy cell in the smaller battery holder.

HANDLING PRECAUTIONS FOR DRY CELLS

Careless handling of dry cells may result in electrolyte leakage or bursting. Note the following points.

1. When installing, be certain that their polarity is correct.
2. Do not mix new and used battery cells.
3. Some types of dry cells with similar shapes may have different voltages. Be sure to use the same type of battery cells.
4. Some types of dry cells are rechargeable while other types are not. Carefully read the notes on the cells before use.

4.2 SUPPLY VOLTAGE CHECK

Check the supply voltage as follows:

1. Set the LIGHT/BAT CHECK switch (19) to the BAT CHECK position.
2. Turn the POWER/VOL control clockwise until the POWER switch clicks on. The lamps will glow and the meter will indicate the voltage supplied from the battery.
3. If the meter pointer is in the red zone on the meter scale (Fig.), the battery cells require replacement or recharding. When the battery cells installed in the unit are of UM-3 manganese or alkaline type, replace them. If they are rechargeable Ni -Cad cells, recharge them.
When the transceiver is powered from an external power source, the meter will indicate the external source voltage.

4.3 RECHARGING Ni-Cad BATTERY CELLS
4. Ni-Cad battery cells used in the unit require recharging before the meter pointer falls into the red zone.
5. When recharging the battery, be sure to turn the POWER/VOL control fully counter clockwise to the OFF position.
6. Plug the optional charger into the charging socket (22) on C78 for charging.
Optional charger: C12/230-6: 10 hours for 80% charging

CAUTION:

1. Do not try to recharge unrechargeable bat teries such as UM-3 manganese or alkaline cells.
2. Avoid overcharging, as it shortens battery life.
For normal charing efficiency, the Ni-Cad cells should be charged under an environment temperature of more than $0^{\circ} \mathrm{C}$

Connection to an external power source

Fig. 3 Charging with the C12/230-6 charger

4.4 BATTERY TYPES AND THEIR CHAR

 ACTERISTICSDifferent types of batteries have different discharging characteristics (see Fig. 4)
The manganese and alkaline batteries have a The manganese and alkaline batteries have a the Ni-Cad battery has a sudden voltage drop after it maintaining a relatively constant output voltage level.

0

\author{

- Ni-Cad battery
} - - - SUM-3 (manganese battery --- - - UM-3 (manganese battery)

Fig. 4 Discharge characteristics

When used in the C78 transceiver, fully charged Ni -Cad batteries operate for approximately 4 hours for repetitions of one-minute transmis sion, one-minute reception, and 8 -minute stand by (with battery saver on). The manganese battery cells allow an operating duration of pproximately 1.5 hours in the same operation mode.

4.5 PORTABLE OPERATION

1. For portable operation, attach the supplied shoulder belt to the strapping posts on the unit, and replace the microphone hanger in a convenient position on the shoulder belt. For mounting instructions, see Fig. 5.
2. We recommend the use of the optional carrying case CLC8, which will protect your equipment from possible damage and provide better maneuverability.

4.6 MOBILE OPERATION

1. For mobile operation, obtain the optional mobile bracket CMB8 from vour dealer and mount it under the dash of your car. The unit can be popped in and out with the pop-out gear on the bracket (see Fig. 6).
2. Combining the mobile bracket (CMB8) with the optional power booster CPB78, your transceiver is powered to 10 watts just by sliding the unit into the mobile bracket (see Fig. 6)

NOTE:

When operating the C78 transceiver in combination with the CPB78 power booster, be sure to set the power switches on both the C78 and CPB78 at the ON position.
At the end of every operation, turn both power switches off.
3. For mobile operation, it is adviseable to use the optional line filter (CLFO3) in the power supply line to prevent noise interference from the alternator line.
When using only the C78 transceiver for mobile operation, use the supplied external power plug for power connection to the lighter socket and install in it a fuse with a 1A rating.

When the transceiver unit is used in the mobile bracket (CMB8), connect the supplied power cable to the socket.

Fig. 5 INSTALLING ACCESSORIES

FIG. 6 INSTALLING MOBILE BRACKET AND POWER BOOSTER

7 BASE STATION OPERATION

1. When the unit is to be powered from a commercial AC power source via a regulated DC power supply, use the supplied external power plug for connection and install in it a fuse with a 1 A rating
2. When the transceiver unit is used with the power booster (CPB78), the unit should be powered through the power cable attached to the booster.

NOTE:

The battery charger cannot be used as an external power supply.
3. When using an external antenna for base station operation, disconnect the supplied antenna from its front socket

NOTE:

After a prolonged transmission interval, the power booster (CPB78) will become considerably hot, but this is normal. Allow free circulation of air around the unit for adequate ventialtion.

Plug conversion cord supplied with the CPB78

Regulated DC power supply

5. MICROCOMPUTER-ASSISTED OPERATION

5.1 MICROCOMPUTER OPERATION

5.1.1 SELECTING A CHENNEL SCAN STEPPING

The desired ghannel scan stepping of 25 or $50 \mathrm{kHz} /$ step can be selected with the STEP switch located behind the battery compartment id. This switching may be done with the unit left on.

5.1.2 MEMORY BACK-UP

a. The memory BACK UP switch behind the battery compartment lid is factory set at the OFF position.
b. When the unit is turned on for the first time, a chennel frequency of 433.500 MHz is displayed in the frequency readout under the program control
c. When the BACK UP switch is turned on and the POWER switch is turned off, the channel frequency displayed just before the POWER switch is turned off is stored in the memory. When the POWER switch is turned on again, the same frequency is displayed in the frequency readout. (The scan mode is not stored.) This memory back-up feature is also effective when the unit is powered from an external power source.
[Example]
When a channel frequency of 433.125 MHz is displayed:

turned off. \rightarrow

POWER switch

 turned on. \rightarrow
5.1.3 FREQUENCY SELECTION

Channel frequencies can be selected with the CHANNEL SELECTOR on the front panel of e unit or with the UP-DOWN control on the mic:
The Hand Microphone (MP-716) supplied with the C78 Transceiver is equipped with a channel frequency UP-DOWN control. Pressing and holding the control switch in the UP or DOWN position scans the channels (at a speed of $120 \mathrm{~ms} /$ channel).
b. When the UP-DOWN seitch is released, channel scanning stops at the frequency currently being received.
c. Holding the UP-DOWN control switch for less than 0.5 second scans to the next channel where it stops.
d. When the UP-DOWN control switch is activated, all other key operations ar bled except for the press-to-talk (PTT) button on the microphone which stops channel scanning.

5.1.4 PROGRAMMING CHANNEL
 FREQUENCIES

- Initial frequency programming

The C78 Transceiver has 5 channel memory addresses (M1-M5) and one offset memory address. The offset memory stores frequency shift span data. To store frequency data in each memory address, follow the programming steps described below:
The C78 incorporates five memory units M1, M2, M3, M4, and M5, each capable of storing up to one frequency i.e. six frequencies in all. To store the desired frequency in each memory unit, follow the procedure given below:
a. Press RCL key to access memory M1. (The channel frequency set up just before RCL key depression is 433.000 MHz .) When no frequency datum is stored in M1:
C_{M} Blinks
(Memory indicator " M " blinks and memory address indicator "1" goes on both just below the MSD, indicating that no frequency datum is present in M1).
b. Select the desired channel frequency with the CHANNEL selector on the unit or the UP-DOWN switch on the microphone $(433.250 \mathrm{MHz}$)
The selected frequency appears:

M_{M} Blinks
c. Press the ENTER key to store the displayed frequency datum in memory M1. Memory indicator M will go on.

3.250

M Goes on.
d. Press the RCL key to check the frequency datum stored in memory M1

7250

Storing a frequency atum in memory M2

a. Press the RCL key again to access memory M2.
When no frequency datum is stored

b. Select the desired channel frequency with the CHANNEL selector or the UP-DOWN switch (e.g. 433.275MHz)

M_{M} Blinks.
c. To store the datum in memory M2 press the ENTER key. Memory indicator \mathbf{M} goes on.

d. Press the RCL key to check the frequency datum tored in memory M1

e. Press the RCL key again to check the frequency datum stored in memory M2.

3275

Storing frequency data in memory address M3 ~M5

The desired channel frequency data can be stored in memory addresses M3 ~ M5 in much the same way as the programming procedure for M1 and M2 described above.

Storing an offset datum in the offset memory
a. Press the RCL key 6 times to access the offset memory.

b. Select the desired frequency shift span with the MHz button and the CHANNEL selector or UP-DOWN switch (e.g. 7.6 MHz of shift span).

c. To store the datum in the offset memory, press the ENTER key. After storing the datum, ensure press the CCL key.

d. Press the RCL key 6 times to check the shift span datum stored in the offset memory.
5.1.5 STORED FREQUENCY ALTERATION

[Example]

Changing channel frequency stored in M2 (this example shows stored frequency alteration from 433.275 to 433.850 MHz .)
a. Press the RCL key repeatedly until memory M2 is accessed.
When frequency 433.275 MHz is stored

M Goes on

Select the desired replacement frequency with the CHANNEL selector or the UP. DOWN switch (e.g. 433.850 MHz)
c. To store the frequency datum in M2 press the ENTER key.

7.850

M Goes on.
d. Press the RCL key twice to check the frequency datum stored in M2.

3.850

5.1.6 RECALLING STORED FREQUENCY

 DATAa. Pressing the RCL key initially recalls a frequency datum tored in memory M1. Pressing it a second time recalls a frequency datum stored in M2
Each time the RCL key is depressed, fre quency data are recalled sequentially from memory addresses M1 through M5 and the offset memory. When the RCL key is pressed after the contents of the offset memory are recalled, memory address M1 is again accessed.

The recall operation takes higher priority over CHANNEL selector and scanning operation.
b. When the memory contents are recalled on the display by RCL operation, press the CCL key to clear the RCL function and bring back the data displayed before the RCL key was depressed.

5．1．7 FREQUENCY SCANNING

－How to scan the entire frequency band
A frequency scanning includes two different approaches：one divides the frequency range from $430 \sim 439 \mathrm{MHz}$ into ten 1 MHz bands and scans within each of those 1 MHz bands，and the other is memory frequency scanning．The scan stop mode includes three different types．
．Scanning sub－band frequencies：
＊Select the desired sub－band to be scanned with the MHz key．
＊Press the ALL key to start scanning from the selected frequency．
＊Each time the MHz key is pressed during scanning，channel scanning is shifted to an upper sub－band．
$\stackrel{430}{2}$

During scanning，scan indicator＂ S ＂ap pears just below the LSD of the fre－ quency readout．

SCANNING TIME

Channel	50 kHz stepping $(1 \mathrm{MHz})$ 20 channels	25 kHz stepping $(1 \mathrm{MHz})$ 40 channels
switch	Approx． 5 sec．	Approx． 10 sec．
Busy Vacant	Approx．	
Free	Approx． 40 sec．	Approx． 1 min .20 sec．.

b．To search for a busy channel：
＊Set the SCAN MODE switch to BUSY．
＊Adjust the SQL control．
＊Scan stops at a busy channel where an input signal is present．
＊When the input signal is ceases，scanning recommences．

Also displayed during scan stop interval．
＊Once the transceiver is set to the trans－ mission mode by pressing the PTT but－ ton，channel scan will not start even when the input signal ceases．

啚回回面

Goes off．
c．To search for a vacant channel：
Set the SCAN MODE switch to VA－ CANT．
＊Adjust the SQL control．
＊Scan stops at a channel where no input signal is present
＊When a signal is received on the channel， scan recommences．

BREA

Also remains on during

 the scan stop interval．＊Once the transmission mode is tempora－ rily activated by pressing the PTT but－ ton，channel scan will not start even when a signal is received．
d．To scan sub－band chanpels without interrup－ tion：
＊Set the SCAN MODE switch to FREE．
＊Adjust the SQL control
＊Channel scanning will go on at a rate of 2.0 sec per channel with no regard to input signal presence or absence．
e．To stop scanning：
＊Press the CCL key
＊Or press the Press－To－Talk button to momentarily activate the transmission mode．
－Stored channel scanning
a．When the MEMO key is pressed，channel frequencies stored in memory address M1～ M5 are scanned sequentially．

 M12345S

＊When frequency data are stored in all the 5 memory addresses，scanning takes place as follows：
Scan

Returns to M1．
＊When no frequency datum is stored in M2 or M4，these memory addresses are skipped as follows：

Scan

b．To search for a busy or vacant memory channel or to scan all memory channels consecutively，select the appropriate SCAN MODE switch position in the same manner as in sub－band scanning．

5．1．8 OTHER USEFUL OPERATIONS

a．Using the RCL and CCL Keys，you can recall a frequency stored in M1 and othe arbitrarily selected frequencies alternately

［Example］

When frequency 433.250 MHz is held by M1 and another frequency 433.125 MHz is selected with the CHANNEL selector or the UP－DOWN switch：

3.125

\rightarrow Press the RCL key．\rightarrow

```
7.250
```

3． 125
b．Channel scanning can be stopped by mo mentarily pressing the Press－To－Talk button during sub－band or memory scan．Utilizing this fact，you can stop channel scanning exactly when the desired channel or searched－for station is picked up，just by pushing the PTT button．
c．The UP－DOWN switch on the microphone permits you manual channel scanning on a step－by－step basis．
d．Combining the MHz key，CHANNEL selec－ tor and UP－DOWN switch，you can quickly locate the desired channel within a 10 MHz bandwidth．

Shifting the transmitter frequency for repeater operation:

1. Store the desired shift frequency span in the offset memory (e.g. 7.6 MHz .)
2. Select the desired reception channel frequency with MHz key and the CHANNEL selector or UP-DOWN switch.

1.250

3. Set the RPT switch to R1
4. When the PTT button is pressed to activate the transmission mode, the transmission frequency is automatically shifted by the programmed frequency $\operatorname{span}(7.6 \mathrm{MHz})$ as follows:

8.850

NOTE:

The transmission frequency is the sum of the reception frequency and the programmed frequency shift span. If it is shifted outside the amateur FM band, the frequency readout is "OFF".

[Example]

Shift span: 7.6 MHz Reception frequency: Transmission frequency:

434.000 MHz

 Shifted outside the amateur band by 1.6 MHz .Frequency display:

In this state, the transceiver provides no emission.

Shifting the reception frequency for repetition

1. Store the desired frequency shift span in the offset memory (e.g. 7.6 MHz)
2. Select the desired transmission channel fre quency with the MHz key, CHANNEL selector of the UP-DOWN switch.

1.250

3. Set the RPT switch to R2. The reception channel frequency is obtained as follows (with 7.6 MHz shift):

8.850

4. When the PTT button is pressed, the se lected transmission channel frequency is restored as follows:

1.250

NOTE:
The reception channel frequency is the sum of the transmission channel frequency and the programmed frequency shift span. If it is shifted outside the amateur band, the frequency eadout is "OFF".

[Example]
 Shift span: $\quad 7.6 \mathrm{MHz}$
 Transmission frequency: 434.000 MH
 Reception frequency: Shifted outside amateur band by 1.6 MHz .
 Frequency display:
 DIF

When the reception frequency is shifted back within the amateur band with the MHz key CHANNEL selector or UP-DOWN switch, the OFF message ceases and normal frequency display is restored in the readout.
5.2 OPERATING INSTRUCTIONS FOR RECEPTION

1. Turn the VOL/OFF control clockwise to the detent "OFF" position
The transceiver initially selects a channel frequency of 433.500 MHz as long as the backed-up internal memory does not supply any frequency other than this.
2. Adjust the VOL control for the desired listening level.
3. Adjust the SQL control (3) clockwise until the back-ground noise, heard over the speaker, just disappears.
4. Select the desired channel by any of the following methods
a. Operate the CHANNEL selector (4).
b. Operate the UP-DOWN switch (29).
c. Use the $\mathbf{M H z}$ key to select the desired 1 MHz sub-band to be scanned one of the 10 sub-bands from 430.000 to 439.975 MHz , then press the ALL key to start scanning in 25 or 50 kHz steps.
The SCAN MODE switch (17) selects the following scan modes:

* BUSY position: Scan stops at a busy channel.
* VACANT position: Scan stops at a vacant channel.
* FREE position: Scans all channels within the selected sub-band
d. Press the SCAN MEMO key (11) to scan channel frequencies stored in the channel memory.
e. Press the MEMO RCL key (7) to recall a stored channel frequency.

For details, see (5.1.) MICROCOMPUTERASSISTED OPERATION.

5.3 OPERATING INSTRUCTIONS FOR TRANSMISSION

- PRECAUTION

There are numerous radio channels in service close to the amateur band. If your mobile station is in the close vicinity of one such service station, the emission from your rig may cause unexpected interference to the service communications even if your emission is completely in compliance with regulations. Avoid operation in the following locations:

1. Check that your transmission will cause no trouble to other communications.
2. Press the Press-To-Talk button and hold while you are transmitting. Speak distinctly into the microphone while holding it $3 \sim$ 5 cm away from your mouth.
5.4 ADJUSTING AUDIBLE KEYING TONE LEVEL

The keying tone level adjustment is located just below the speaker in the cabinet. For level adjustment, remove the top cover from the unit. Adjust the variable resistor located closer to the front panel on the PC board, with a Philips screwdriver.
This adjustment should be done with the squelch control activated.

5.5 RESETTING THE MICROCOMPUTER

If a malfunction occurs or key operation is ineffective, the internal microcomputer requires resetting.
To reset the microcomputer, press the rear RESET button (20) while the transceiver is on. Upon resetting, the frequency display will return to the initial frequency of " 3.500 "

6. RF ATTENUATOR MODIFICATION
 FOR FOX HUNTING

The C78 provides full maneuverability in out door portable operations. Particularly in fox hunting, the transceiver's receiver sensitivity is usually adjusted by connecting or disconnecting its antenna. If the receiver sensitivity is still too high even when the antenna is disconnected from the unit, it can be reduced by approxi mately 35 dB by simple circuit modification and addition of an external variable resistor as follows:

Modification Procedure

1. Remove the top cover from the unit (with the speaker).
2. Cut the jumper across JR05 and JR06 at the middle of the lead.
3. Solder lead wires to the free ends of the jumper leads.
4. Connect the other ends of the leads to a variable resistor of $10 \sim 20 \mathrm{k} \Omega$ as shown at right.

7. OPTIONAL FEATURES

The following optional features are available with the C78 for increased operation flexibility and convenience:

and convenience:	CMB8
- Mobile bracket	CPB78
- Carrying case	CLC8
- Charger	C12/230-6
- Line filter	CLF03
- Base station power supply	CPS02

- Base station power supply

TOP VIEW

SERVICE MANUAL SECTION OPERATING INSTRUCTIONS

RECEIVER SECTION

Reception system:
Double conversion superheterodyne system using 21.4 MHz for the 1 st IF, and 455 kHz for the 2nd IF.

* The input signal from the antenna terminal (J804) goes through an antenna switch circuit and a cavity, LR01 and LRO2. The output of the cavity couples to gate 1 of QR01 (MOS FET), where it is amplified
* The output of QR01 goes through another cavity consisting of LRO3 and is fed to gate 1 of the 1 st mixer QRO2 (MOS-FET). Gate 2 of QRO2 accepts the local signal $(408.6 \mathrm{MHz}-418.58 \mathrm{MHz})$ from the PLL board. The local signal is fed to JR01 and then fed to QR02 via LR04.
* The 21.4 MHz output of QR02 goes through a monolithic filter, FR01, for better selectivity and intermodulation rejection.
* The output of the filter (FR01) is amplified by QR03 before being applied to pin 16 of IC QR10.
* QR10 (MC3357P) contains the 2nd local oscillator, 2nd mixer, IF amplifier, squelch switch, and detector.
* The 21.4 MHz signal coupled to QR10 is converted to a 2 nd IF signal, 455 kHz , which passes through a dual stage ceramic filter that is externally provided across pins 3 and 5 of QR10. The output of the filter is internally amplified, subject to limiter detection, then coupled to pin 9 as an audio signal.
* The AF signal output goes to the preamplifier (QRO6) and power amplifier QR11). The output of the power amplifier drives the built-in speaker.

[Squelch Circuit]

* The noise component present at pin 9 of QR10 goes through an active filter utilizing an internal amplifier. The output of the active filter is rectified by QR20 and QR21 (OA99). The rectified DC voltage couples to pin 12 of QR10 to control the Schumitttype squelch switch.
* When the squelch switch is activated due to the $D C$ voltage applied to pin 12 , pin 14 of QR10 is opened. When the squelch switch is turned off, pin 14 is shorted to ground.
* $A+B$ voltage is applied to pin 14 or QR10 through RR40 $(10 \mathrm{k} \Omega)$. When the squelch switch is turned on, the emitter of the AF
preamplifier (QR06) and the muting termi nal (pin 8) of the AF power amplifier QR11) rise muting out the noise com ponent.
* The output voltage at pin 13 of QR10, used for scanning control, lowers when the squelch switch is on, and rises when the switch is off
[Schumitt-Type Squelch Circuit Operation]

Low \leftarrow Input signal level \longrightarrow High
[Meter Circuit]

* The S meter drive signal present at pin 5 of QR10 is amplified by meter amplifiers, QR04 and QR05, and applied to meter M801 via JR04.

TRANSMITTER SECTION

* The external microphone (MP716) output is amplified by QR401 and QR402. The amplifier output goes through a low-pass filter where frequency components above 3 kHz are filtered out. The signal is then applied to Q203 in the VCO circuit to directly fre0203 in the VCO circuit to directly frequency modulate the VCO output (react-
* ance modulation).
* The output of the PLL board (J102) is fed to JT01 on the transmission younger stage stage board.
* The signal supplied from the PLL board is amplified by QT01, QT02, QTO3 and QT04 in this order, then is applied to antenna connector (J804) via low pass filter and antenna switch.
* The Automatic Power Control (APC) circuit utilizes the voltage feedback principle. The output of QTO4 is rectified by diodes QT11 and QT12. The rectified DC voltage is applied to the base of the APC control transistor QTO6, to control the 2nd gate voltage of QT01 (MOS FET) and hence RF power.
* When the APC is inactive, RF power is approximately 2 watts.

Tone Burst Generator

When the PTT switch is used:

When the PTT switch is pressed initially, the potential at terminal A in the schematic diagram lowers. This causes \#1 of Q003 to lower momentarily, causing \#3 of Q003 to rise. As a result, \#5 and \#6 of 0003 also rise, which lowers \#4 of Q003. The potential at \#12 and \#13 of Q003 starts dropping but does not reach its lowest level, leaving the tone burst circuit inactive.
When the PTT switch is pressed twice consecutively, the potential at \#12 and \#13 of 0003 goes to its lowest level. This causes \#11 of Q003 to rise, activating the tone burst generator. The potential at \#12 and \#13 of Q003 gradually increases, and \#11 of 0003 is maintained at a high level for 0.8 seconds. This means that the tone burst signal is transmitted for only 0.8 seconds when the PTT switch is pressed a second time.
The output of the tone burst generator is level-adjusted by R010, then applied to the PLL modulator via R011 and C006.

When the CALL button on the C78 is used:

* Pushing the CALL button applies a voltage, +9 V , to terminal B in the schematic dia gram. This brings up the potential at the gram. This brings up the potential at the
base of $Q 001$, turning it on and therefore base of Q001, turning it on and therefore
causing terminal A to lower, putting transcausing terminal A to
ceiver in the $T X$ mode.
* As a high level is applied to \#5 and \#6 of Q003 through Q002, \#4 of Q003 is main tained at a low level while the CALL button is held down.
Number 12 and \#13 of Q003 are lowered, raising \#11 and \#8, which activates the tone-burst generator.
* When the CALL button is released, Q001 is turned off. This causes terminal A to rise, putting the transceiver in the RX mode.
Q006, a voltage regulator, holds the voltage at $Q 003$ at +9 V .

PLL SECTION

* The PLL circuit in the C78 is controlled by 9 -bit binary code and A / B band switching signal both coming from microcompute QLO1.
PLL Frequency Relationship at Transmission Mode in Bands A (430 MHz) and B (435.00 MHz)

Fig. PLL Basic Block Diagram

* The VCO frequency is one fifth (80 MHz) the object transmission and reception frequency.
The 80 MHz band signal oscillated by the VCO is multiplied by 5 in the PLL.
For transmission, the object frequency is obtained, while for reception, a frequency 21.4 MHz lower than the object frequency is obtained.
The A / B band switching signal is automatically supplied from the control IC (QLO1) according to operation frequencies selected. The A/B band switching signal switches local oscillator frequencies inside the PLL.

A band $430.000 \sim 434.975 \mathrm{MHz}$
B band $435.000 \sim 439.975 \mathrm{MHz}$

1. PLL IC (Q113)

PLL IC Q113 integrates the following circuits on a single chip.

* Reference frequency oscillator: 10.24 MHz * Phase Detector: P/D
* Programmable Counter: I/N
* Unlock Detector

(1) PROGRAMMABLE COUNTER (1/N)

The programmable counter accepts a 9-bi binary code from the microprocessor (QLO1) which determines the frequency division ratio The output frequency from the mixer is divided by the programmable counter in accordance with the determined division ratio, and the divided frequency is fed to the phase detector.

2) PHASE DETECTOR (P/D)

1. The phase detector detects the phase difference between 5 kHz frequency, which is obtained by dividing the reference frequency of 10.24 MHz by 2048 , and the programmable counter output frequency.
2. The detector output obtained at pin 7 is converted into a DC voltage by an R/C integrating circuit. This DC voltage is ap plied to a varicap Diode (Q201) in the VCO to control the VCO output frequency. This DC voltage variation applies to the varicap diode which controls the VCO output frequency.

2. VCO CIRCUIT

1. The phase detector output from PLL IC Q113 is converted into a DC voltage by an R/C integrate circuit.
2. The DC voltage is applied to varicap diode Q201 to vary its capacitance.
3. The VCO output frequency is controlled by the variation of the varicap diode capacitance.
4. The VCO output frequency covers a maxi mum variation range of 3 MHz according to input DC voltage variation.

3. LOCAL OSCILLATOR

1. The local oscillator uses the overtone oscillation system. It oscillates at the follow ing frequencies.
frequencies:
RX-S 40.0825 MHz in band A
RX-S 40.5825 MHz in band B
TX-S 42.2225 MHz in band A TX-S 42.7225 MHz in band B
2. Each of the above frequencies is doubled before they are coupled to mixer:
RX-S 80.165 MHz in band A
RX-S 81.165 MHz in band B
TX-S 84.445 MHz in band A
TX-S 85.445 MHz in band B

4. MIXER

1. The output of the VCO circuit is fed to the mixer via buffer amplifier Q205 and Q117
2. The VCO output and local oscillator output are mixed in mixer to create frequencies from $1.555 \sim 2.550 \mathrm{MHz}$.
$\mathrm{F}(\mathrm{VCO})-\mathrm{F}($ Local OSC $)=1.555 \sim$ 2.550 MHz .
3. The mixer output goes through an LPF Q101 and Q102 to be subject to waveform shaping before it is fed to Q113's pin $2(1 / \mathrm{N}$ circuit).

5. PLL IC (Q113) UNLOCK

An unlock signal is obtained at pin 8 of the phase detector circuit in the PLL IC.

6. UNLOCK SWITCH CIRCUIT

The unlock output of the PLL IC is integrated into a DC voltage by a C/R circuit. Using this DC voltage, Q115 discriminates between locked and unlocked the PLL state.

7. UNLOCK PREVENTION CIRCUIT

In order to prevent faulty VCO circuit operation, a UL (unlock) voltage is applied from Q116 to the varicap (O201) in the VCO circuit if the PLL circuit is unlocked. This maintains the VCO circuit within its stable operation range.

$\begin{aligned} & \text { Frequency } \\ & \text { Display } \\ & (\mathrm{MHz}) \end{aligned}$	Dividing Ratio	Binary Code								
		R 。	R,	R_{2}	R,	R,	R_{5}	R。	R,	R_{5}
430.000	311	1	1	1	0	1	1	0	0	1
430.025	312	0	0	0	1	1	1	0	0	1
430.050	313	1	0	0	1	1	1	0	0	1
434.975	510	0	1	1	1	1	1	1	1	1
:	Band	Swit	chin	takes	plac					
435.000	311	1	1	1	0	1	1	0	0	1
435.025	312	0	0	0	1	1	1	0	0	1
435.050	313	1	0	0	1	1	1	0	0	1
\vdots										
439.975	510	0	1	1	1	1	1	1	1	1
	Band	Swit	chin	takes	plac					
430.000	311	1	1	1	0	1	1	0	-	1

CONTROL SECTION

The control section consists of the following sub sections:
Microprocessor section

* Display section
* keyboard section
* Channel switching section (manual)
* Control I/O decoder section
* Control LSI QL01 operates on a supply voltage +4.5 to +5.5 V . With the C 78 , it operates on a supply voltage +5 V .

1. THE FOLLOWING OUTPUT SIGNALS ARE AVAILABLE FOR EXTERNAL CIRCUIT CONTROL
(1) PLL IC programmable counter drive output: 9 -bit binary code output for programmable counter drive is available at pins (22) through (30).
(2) LCD Drive

An LCD drive output (dynamic) is available at pins 8 through 13. $\left(D_{0} \sim D_{3}, E_{0}, E_{1}\right)$
3) Buzzer Drive

Output F1 at pin 17 conttols the buzzer tone generator provided within QLO2.
(4) Battery Saver Control Output When the BATT SAVE switch is turned on, output FO at pin 16 provides a pulse array with a duty cycle of $1 / 8$ to switch the $R X+B$ control transistor, QS16, accordingly.
2. THE LSI REQUIRES THE FOLLOWING COMMANDS

1) Initial clear [pin 7

A positive pulse is applied to pin 7 (RES) of the control LSI so as to reset all internal circuits to their initial state when the power to the unit is turned on.
(2) Matrix circuit [pins $2-5$ and $35-40$] The matrix circuit permits up to 18 key inputs.
Pin 2($\left.C_{0}\right), 3\left(C_{1}\right), 4\left(C_{2}\right), 5\left(C_{3}\right), 35\left(A_{2}\right)$, $36\left(\mathrm{~A}_{3}\right), 37\left(\mathrm{~B}_{0}\right), 38\left(\mathrm{~B}_{1}\right), 39\left(\mathrm{~B}_{2}\right), 40\left(\mathrm{~B}_{3}\right)$

Channel Switching

* CHANNEL Knob

This rotary switch utilizes a pulse switch, which closes matrix $\mathrm{CO} \sim \mathrm{BO}$ for up-going channel selection, and matrix $\mathrm{CO} \sim \mathrm{B} 1$ for down-going channel selection.

* UP-DOWN switch on the microphone

The UP-DOWN switch on the microphone controls internal analog switches, which close matrixes $\mathrm{CO} \sim \mathrm{B} 2$ and $\mathrm{CO} \sim \mathrm{B} 3$ which control channel frequencies in the respective directions. The up/down command from the microphone switch is applied to pins 13 and 5 of QL03.

Key Operation

1. MHz

Pressing the MHz key closes matrixes C 2 and BO . Each depression of the MHz key increments the operation frequency by 1 MHz .
When the MHz key is pressed and held, channel frequency automatically steps up at a rate of $2 \mathrm{MHz} / \mathrm{sec}$.

[Example]

Original frequency: $\quad 433.000 \mathrm{MHz}$
1st depression: 434.000

2nd depression 435.000

3rd depression: 436.000

The 7th depression causes the frequency to return to 430.000
7th depression:
430.000
2. BATT/SAVE

The BATT/SAVE feature is activated by closing matrixes C2 and B3. When it is activated, a small dot appears at the right margin of the LCD display, and output FO at pin 16 provides a pulse array with a duty of $1 / 8$ to control RX $+B$.
When the BATT/SAVE feature is inactive, output FO is maintained at a high level.
If analog switch C2 - A3 for SQL control is closed or scan control key (AS or MS) is pressed when the BATT/SAVE feature is activated, output FO is also maintained at a high level.
3. CCL

Pressing the CCL key closes matrixes C1 and B3. This resets the MEMO, RCL, SCAN ALL and SCAN MEMO features to their initial state.

4. SCAN MEMO

Pressing the SCAN-MEMO key closes matrixes $C 1$ and B1. This scans the 5 stored channel frequencies in sequential order.

5. SCAN ALL

Pressing the SCAN-ALL key closes martixes C1 and B2. This starts channel scanning upward from the displayed frequency with a spacing of 1 MHz .

6. MEMO-RCL

Pressing this key closes matrixes C 2 and B 1 . This recalls the stored frequency to the display.

7. MEMO-ENTER

Pressing the MEMO-ENTER key closes matrixes C2 and B2. This stores the displayed frequency in memory.

Slide Switch Function

1. VACANT SCAN

The vacant scan mode is activated when matrixes CO and A 3 are closed.

2. BUSY SCAN

The busy scan mode is activated when matrixes CO and A 2 are closed

3. FREE SCAN

The free scan mode is activated when both matrixes $\mathrm{Co}-\mathrm{A} 3$ and $\mathrm{CO}-\mathrm{A} 2$ are opened. Scan rate is automatically set high for the busy and vacant mode, and set low for the free mode.
4. S (Simplex)

When matrixes C3 and A3 are closed, the RPT mode is set to the simplex (S).
5. R1

When matrixes C3 and A2 are closed, the RPT mode is set to R1. In this mode, the transmission frequency is shifted up by the frequency data stored in the offset memory.
6. R2

When matrixes C3 - A3 and C3 - A2 are opened, the RPT mode is set to R2. In this mode, the reception frequency is shifted up by the frequency span data stored in the offset memory.

[Example]
 Frequency selected 435.000 MHz
 Offset memory data. $\quad 3.00 \mathrm{MHz}$
 R11Tx $438 . \quad 435.00 \mathrm{MHz}$
 R2 $T x$. $\quad 435.00 \mathrm{MHz}$
 Rx $\quad 438.00 \mathrm{MHz}$

Scan Operation Sequence

a. In the busy scan mode, scanning stops at a
channel where an input signal is present.

* When an input signal is present, an high level output is provided at pin 3 of QR12.
* The high level output at pin 3 of QR12 couples to pin 6 of QL03 to close matrix C 2 - A3. The microprocessor detects this closure of the matrix and stops scanning. In the busy scan mode, scanning stops when matrix $\mathrm{C} 2-\mathrm{A} 3$ is closed.
b. In the vacant scan mode, scanning stops at a channel where no input signal is present.
* When no input signal is present, pin 3 of QR12 provides a low level output. As a result, matrix $\mathrm{C} 2-\mathrm{A} 3$ remains open if the low level output at pin 3 is coupled to pin 6 of QLO3.
* In the vacant scan mode, scanning stops when matrix C2 - A3 is opened.
c. The microprocessor monitors the scan modes (busy, free, vacant) and matrix C2 A3 states to provide the following controls: In the busy mode: Scan stops when 2 A3 is closed. Scan starts when C2 -A 3 is opened.
In the Free mode:
Scan continues regardless of matrix states.
In the vacant mode: Scan starts when C2 - A3 is closed.

Scan stops when C2 A3 is opened.

25/50kHz Channel Stepping Selection
Channel stepping is selected with the channel stepping selector switch SL01
Closing matrix $\mathrm{C} 1-\mathrm{A} 3$ selects 25 kHz stepping. Opening matrix C1 - A3 selects 50 kHz stepping.

(1) Memory Back-U

a. The $\mathrm{SW}+\mathrm{B}$ is monitored at pin 33 (AO of QL01.
b. When the C78 is switched off, the potential at AO lowers.
c. When AO lowers, the microprocessor lowers all its outputs.
d. The memory is backed up since the microprocessor remains alive even when its $A 0$ is low.
2) Control Section State in the TX Mode In the TX mode, TX + B is applied to A1 to render all input to the microprocessor in effective and hold all output at a DC leve Since in this state no pulse enters or leaves the microprocessor, the signal-to-noise rati in the TX mode is significantly improved.

3. DISPLAY SECTION

The display section consists only of an LCD and LCD driver.
Four data lines (DO ~ D3) and two contro lines (EO and E1) are coupled from QL01 to the LCD driver (Q801). Power supply voltages VDD and VSS, and a clock signal are also applied to the LCD driver.
Based on these signals, the LCD driver dynam ically drives the LCD display with $1 / 3$ duty pulse.
The presence of dynamic drive means that the LCD driver requires a clock signal.

4. OTHER PERIPHERAL CIRCUITS

(1) Back-Up Circuit

When the C78 is switched on, necessary DC power is supplied by voltage regulator OS21
When the C78 is switched off, the back-up power from the 12 V battery goes through the back-up switch, SLO2, and couples to the voltage regulator, OSO2, where it is converted into +5 V DC before being sup plied to the memory.
When an external power source is used, the microprocessor is also backed up as long a the BACK UP switch is on

(2) Reset Circuit

When the RESET switch is pressed, the base of QL01 is grounded. This applies a +5 V to pin 7 of QLO1, thus resetting the entire internal circuits of QL01, including the memory.

DISASSEMBLY

3. REAR PANEL

To remove rear panel A from the chassis, remove retantion screws $1 \sim 8$.

CAUTION:

Avoid damaging the wiring to the rear panel.

4. REMOVING PC BOARD ASSEMBLIES

PLL, CONTROL BOARD

1. Disconnect the two coaxial cables from the board.
2. Disconnect connector plugs $(\mathrm{A}) \sim(J)$ from the board.
3. Remove retention screws $1 \sim 5$.

RX, TX BOARD

1. Disconnect coaxial cables (A) and (B) from the board.
2. Disconnect connector plugs $(C) \sim(G)$ from the board.
3. Remove retention screws $1 \sim 5$.

ALIGNMENT PROCEDURE

conditions

* All adjustments have been completed prio to shipment. Further adjustments should be limited to a necessary minimum.
* Make sure that all measuring instruments required for alignment are completely calibrated and operate normally.
* Before starting measurement, idle the instruments for half-an-hour.

Required Measuring Instruments

1. UHF standard signal generator
2. RF power meter
3. Audio signal generator
4. AC/DC voltmeter (VTVM
5. RF voltmeter
6. Frequency counter
7. Oscilloscope
8. Galvanometer
9. Regulated DC power supply
10. DC ammeter
11. (Spectrum analyzer)
12. (Digital voltmeter)

Required Alignment Tools

1. Philips screwdriver ... for casing and boards 2. Standard screwdriver. . for trimmer resistor
2. Non-metallic standard screwdriver
for RF and trimmer capacitor adjustment
3. Box screwdriver for support (2.6, 3.0 mm)

For RF circuit and frequency adjustment, use a non-metallic screwdriver.

C78 ALIGNMENT PROCEDURE

1. Standard Alignment Conditions

Supply voltage
13.8V DC
Audio output: \qquad 0.7 watts
Audio output loadin 8.0Ω
Frequency deviation: $\ldots \pm 3.5 \mathrm{kHz}$
Modulation frequency: .. 1 kHz
Transmitter load: 50Ω
Reception frequency: ... 435.00 MHz
Transmission frequency: . 435.20 MHz

2. Alignment Notes

Handle all trimmer resistors and capacitors gently. Unless otherwise specified, set the switches and controls as follows:

1. SQL
Minimum
2. VOL: Minimum or mos
adequate level
3. SCAN MODE switch:. . FRE
4. RPT switch:

FRE
5. CHANNEL

Supply 50 kHz
(...... 13.8V DC
7. Frequency: RX: 435.00 MHz TX: 435.20 MHz

TX ADJUSTMENT SET-UP

RX ADJUSTMENT SET-UP

- LCD Supply Voltage Adjustment

1. Switch on C78.
2. Connect a voltmeter across pins 2 and 3 of connector JL01. Adjust RL06 until the voltmeter reads 3.0V DC.

NOTE:

1. Use a DC voltmeter with high accuracy.
2. Application of a voltage exceeding the LCD's rated voltage (3.5 V) may damage the LCD.
3. Pins 3 and 2 of JLO1 are positive and negative respectively.

Clock Frequency Adjustment

1. Connect a frequency counter to TPO3.
2. Adjust the frequency at TPO3 to 400.0 kHz with LL01.

PLL SECTION

NOTES:

1. Unless otherwise specified, leave the PTT switch off during PLL section adjustment.
2. Complete PLL section adjustment before adjusting TX and RX.
3. During PLL section adjustment, disconnect the coaxial cables from jacks JR01 and JT01.
After completing the adjustment, reconnect them.

- PLL Comparison Oscillator Adjustment

1. Connect a frequency counter to TP101, and adjust the frequency at TP101 to 5.1200 MHz with C115.

- Reference Frequency Adjustment

1. Connect a RF VTVM to TP02 (R107)
2. Set up C78 for a channel frequency readout of 430.00 MHz .
3. In the RX mode, adjust L314 and L315 until the maximum level is obtained at TPO2.
4. Set up C 78 for a frequency readout of 439.95 MHz .
5. In the TX mode, adjust L102 until the maximum level is obtained at TPO2.
6. Adjust L314 and L315 until there is no level difference at TPO2 in the TX and RX modes. (Level: approx. 1.5 V rms)

- VCO Adjustment

1. Set up C 78 for a channel frequency readout of 430.00 MHz .
2. Connect a voltmeter to C251.
3. In the TX mode, adjust the voltage at C251 to 2.25 V with C 207 .
4. In the RX mode, adjust the voltage at C251 to 2.0 V with R116.

- Output Adjustment

1. Connect an RF VTVM with a 50Ω dummy load to the TX output coaxial.
2. When C78 is in the TX mode, the VTVM will read approximately 200 mV (when the slug of L108 is turned clockwise by 2.5 turns into the coil bobbin).

NOTE:

When L108 is replaced, turn its slug 2.5 turns into the bobbin in advance.
3. Check that no output level difference exists between output frequencies 430.00 and 439.95 MHz . If there are any, adjust the two slugs in L108 until the difference is eliminated. (The two slugs of L108 should be located at around the same level when adjustment is completed.)

NOTE:

Turning the slug into the coil bobbin reduces the frequency, while turning it out of the coil bobbin increases the frequency.
4. Set $C 78$ in the $R X$ mode λ and select a channel frequency of 435.000 MHz .
5. Connect an RF VTVM with a 50Ω dummy load to the RX output coaxial, and adjust C 131 until a maximum reading is obtained in the RF VTVM.

NOTE:

After completing the adjustment, connect the TX and RX output coaxials to JT01 and JR01 respectively.

1. Disconnect the coaxial cable from JT01, and connect a frequency counter to the free end of the coaxial cable.
2. Set up C 78 for a channel frequency readout of 433.00 MHz and for the TX mode. Adjust C310 until the frequency counter reading is 433.00 MHz .
3. Set up C 78 for a channel frequency readout of 439.00 MHz and for the TX mode. Adjust C312 until the frequency counter reading is 439.00 MHz .
4. Disconnect the coaxial cable from JR01, and connect the frequency counter to the free end of the coaxial cable.
5. Set up C78 for a channel frequency readout of 439.00 MHz and for the RX mode. Adjust C 308 until the frequency counter reading is 417.60 MHz .
6. Set up C78 for a frequency readout of 433.00 MHz and for the RX mode. Adjust C306 until the frequency counter reading is 411.60 MHz .
7. After completing the adjustment, connect the coaxial cables to their original jacks
8. Set C 78 for a frequency readout of 435.20 MHz .
9. Turn the slug of LT15 by 2.5 turns into the coil bobbin. (Only when LT15 is replaced.)
10. Adjust CT09, CT15, CT22, CT23, CT32, and CT30 until the maximum RF power is obtained. In this case, leave RT20 in the fully clockwise position.
11. Adjust LT15 until the RF power difference between frequencies 430.00 and 439.95 MHz is minimized.
12. The maximum RF power will reach approx. 1.8 watt. Reduce RF power to 1.3 watts with RT20.
13. Increase the RF power by adjusting LT14, then again reduce the RF power to 1.3 watts with RT20.
14. Adjust LT15 until there is no RF power difference between both band edges.

- Deviation Adjustment

1. Turn R401 and R416 fully clockwise.
2. Set up an audio signal generator output level for 30 mV AC and couple it to the MIC jack.
Set up the unit for the TX mode and adjust the maximum frequency deviation to $\pm 5 \mathrm{kHz}$ with R416.
3. Set the AF generator output level to 3.0 mV (AC).
Set up the unit for the TX mode and adjust the frequency deviation to $\pm 3.5 \mathrm{kHz}$ with R401.
4. Depress the CALL button and adjust R010 so that the tone deviation is $\pm 3.5 \mathrm{kHz}$. Adjust R007 so that the tone frequency is 1750 kHz .
5. After adjusting the frequency, depress the PTT switch twice and adjust R005 so that the function time of the tone burst circuitry is $0.8 \sim 1.2$ seconds.

NOTE:

The tone burst circuitry should not function when the PTT switch is depressed once.
When the function time is adjusted with a jig, it is not necessary to adjust R005.

To measure the function time of the tone burst circuitry, connect an oscilloscope or synchroscope to one of the following 1. To J402 and J403
2. To the speaker terminal of the receiver
3. To the AF output of a linear detector

- Meter Adjustment (TX)

1. Adjust RF02 until the meter pointer deflects to position " 9 " at a TX output of 1.3 watt.

RX SECTION

- Sensitivity Adjustment

1. Set the C78's channel frequency to 435.00 MHz .
2. Couple an RF signal generator output of 435.00 MHz to the ANT jack on the C78.
3. Adjust LR01 and LR02 until C78's S meter pointer deflection is a maximum.

NOTE:

If the S meter pointer deflects only slightly, turn RR33 fully clockwise.
4. Adjust LR03's slug until the S meter pointer deflection is a maximum.
5. Adjust LR05, LR06, and LR07 until the S meter pointer deflection is a maximum. Adjust CR07 until the optimum SIND point is obtained.

NOTE:

After replacing a trimmer capacitor or coil, adjust them until maximum noise output leve is obtained.
6. Repeat steps 1 sto 5 several times. After the adjustment is completed, turn the slug of LRO2 by $1 / 2$ a turn into the coil bobbin.
7. Adjust LRO8 until the maximum audio output level is obtained.
8. Adjust until no sensitivity difference exists between frequencies 430.00 and 439.95 MHz .

NOTES:

1. Set up the RF signal generator output for a modulation frequency of 1 kHz with a devia tion of 3.5 kHz , and set the output level to a minimum.
2. Adjust until no sensitivity difference exists between frequencies 430.00 and 439.95 MHz .
3. When using a center meter, connect a voltmeter to RX TP04, and obtain the point where the voltmeter reads the same level when a 455 kHz signal is applied to the input and when a signal is received at the antenna. The 455 kHz signal should be applied to pin 5 of QR 10 via capacitor $0.001 \mu \mathrm{~F}$.

Audio Output Level Adjustmen

1. Set up the RF signal generator output for a frequency of 435.00 MHz , a modulation frequency of 1 KHz , deviation of 3.5 kHz , and a level of 60 dB , and couple it to the ANT jack on the Unit.
2. Connect the VTVM to the EXT. SPK jack, and adjust RR38 until the VTVM redds approx. 3.2 $\mathrm{V}(1.3 \mathrm{~W})$.

- Meter Adjustment (S meter)

1. After completing sensitivity adjustment, couple a 10 dB non-modulated carrier signal from the RF to the ANT jack on the unti. Adjust RR33 until the S meter pointer indicates " 6 ".

OTHER ADJUSTMENTS

Meter Adjustment (battery check

1. Set the rear slide switch to BATT CHECK.
2. Set the supply voltage to 9.6 V . Adjust R802 until the meter pointer deflects to the boundary of the red and green zones on the meter scale as shown below.

COMPONENT LOCATIONS

LCD BOARD COMPONENT LOCATIONS-P804

FRONT SWITCH BOARD COMPONENT LOCATIONS-P802

EXT. POWER BOARD COMPONENT LOCATIONS-P803

TONE-BURST BOARD COMPONENT LOCATIONS-P001

REF． DESIG．	Q＇TV	PART NO．	DESCRIPTION
055G	1	200C056060	Buffer
056G	1	200C056070	Buffer
057G	1	200C056080	Buffer
071G	1	59264702G9	Washer
079G	1	62031340W0	Lug
081G	1	62150019E0	Lug
001F	1	200C064060	Case，LCD
002F	2	200C005040	Clamper
003F	4	51400019K0	B．H．Tapped Screw
004F	1	200C053030	Cover
C801	1	DK16102300	Ceramic Cap．1000pF $\pm 10 \%$
C802	1	DK16102300	Ceramic Cap．1000pF $\pm 10 \%$
C807	1	DD15470370	Ceramic 470pF $\pm 5 \%$
C808	1	DD15470370	Ceramic 470pF $\pm 5 \%$
L801	1	LC12010012	Choke Coil，8T
M801	1	IM11020030	D．C．Meter
Q802	1	HI10009020	L．E．D．
R801	1	RD12030080	Variable Resistor $20 \mathrm{~K} \Omega$（ A$)-20 \mathrm{~K} \Omega$（B）
S801	1	SK08080020	Keyboard Switch
S802	1	SR18020010	Rotary Switch
V801	1	IN10140080	Lamp，40mA 14V
$J 801$	1	YJ10001250	Jack，Mic（7P）
J806	1	YJ10001620	Jack，Antenna

REF． DESIG．	Q＇TV	PART NO．	DESCRIPTION
001B	1	200C064010	Case，Front
002B	1	203C063010	Escutcheon，Mould
003B	1	200C063120	Escutcheon，Acryl
017B	1	200C063030	Escutcheon，Alumi Plate
006B	1	203C114010	Stopper
008B	1	4723154020	Knob，VOL
009B	1	4723154030	Knob，SQL
010B	1	200C154500	Knob，Channel
014B	1	200C353010	Ring
015B	2	51100205E0	B．H．M．Screw B2 $\times 4$
016B	2	200C118010	Spacer，Slide SW
043B	1	62021030WO	Lug
001G	1	200C105010	Chassis，Front
002G	2	4656118010	Spacer
003G	4	51062603 A0	P．H．M．Screw P2．6 3
004G	2	51060203 AO	P．H．M．Screw P2 $\times 3$
005G	2	59020403G0	Washer
006G	4	51042604A0	F．H．M．Screw F2．6 $\times 4$
007G	1	200C005030	Clamper
008G	1	4723120050	Insulator
009G	1	200C005010	Clamper
010G	1	51100204 A0	B．H．M．Screw B2 $\times 4$
011G	1	200C056030	Buffer
012G	1	200C271010	Holder，Lamp
038G	1	203C118010	Spacer
045G	2	200C056040	Buffer
047G	1	200C056030	Buffer
050G	1	$200 \mathrm{C053020}$	Cover
052G	1	53112603 AO	Hexagon Nut
053G	1	62031650W0	Lug

ALIGNMENT PROCEDURE

CONDITIONS

* All adjustments have been completed prior to shipment. Further adjustments should be limited to a necessary minimum.
* Make sure that all measuring instruments required for alignment are completely calibrated and operate normally.
* Before starting measurement, idle the instruments for half-an-hour.

Required Measuring Instruments

1. UHF standard signal generator
2. RF power meter
3. Audio signal generator
4. AC/DC voltmeter (VTVM)
5. RF voltmeter
6. Frequency counter
7. Oscilloscope
8. Galvanometer
9. Regulated DC power supply
10. DC ammeter
11. (Spectrum analyzer)
12. (Digital voltmeter)

Required Alignment Tools

1. Philips screwdriver . . . for casing and boards
2. Standard screwdriver. . for trimmer resistor
3. Non-metallic standard
for RF and trimmer capacitor adjustment
4. Box screwdriver . . . for support $(2.6$ 3.0 mm)

For RF circuit and frequency adjustment, use a non-metallic screwdriver.

C78 ALIGNMENT PROCEDURE

1. Standard Alignment Conditions

Supply voltage: \qquad 13.8V DC Audio output: loading: . . . 0.7 watts
Audio output loading: 8.0Ω
Frequency deviation: ... $\pm 3.5 \mathrm{kHz}$
Modulation frequen 1 kHz
Reception frequency: 50Ω
435.00 MHz
Transmission frequency: . 435.20 MHz

2. Alignment Notes

Handle all trimmer resistors and capacitors gently. Unless otherwise specified, set the switches and controls as follows:

1. SQL:
Minimum
2. VOL: Minimum or most adequate level
3. SCAN MODE switch:. .

CHANNEL STEP switch
. CHANNEL STE switch
6. Supply voltage:

50 kHz
7. Frequency:
13.8 V DC RX: 435.00 MHz
TX: 435.20 MHz

REF DESIG.	Q'TY	PART NO.	DESCRIPTION	
018B	1	203C257010	Lid, Upper Case	
019B	1	200C160010	Bracket, Speaker	
020B	6	51142606SO	O.C.H.M. Screw	2.6×6
021B	1	200C202010	Net, Speaker	
022B	6	51402604 T0	B.H. Tapped Screw	B2.6 $\times 4$
023B	1	200C257020	Lid, Bottom Case	
024B	1	200C257030	Lid, Battery Case	
025B	1	200C102030	Lock	
026B	1	200C055010	Collar	
027B	2	59069505G9	Washer	
028B	1	200C102040	Lock	
029B	1	200C056020	Buffer	
030B	1	200C120060	Insulator, Speaker	
031B	6	54012600A0	Washer	
032B	1	200C064020	Case, Rear	
033B	1	200C005020	Clamper	
034B	1	51102604E0	B.H.M. Screw	B2.6 $\times 4$
035B	2	51100204E0	B.H.M. Screw	B2 $\times 4$
036B	2	51102604E0	B.H.M. Screw	B2. 6×4
037B	1	200C265310	Indicator	
038B	1	200C270010	Button	
039B	1	62261240W0	Lug	
040B	2	200C155010	Hanger	
041B	2	54040402B0	Spring Washer	
046B	1	62261240WO	Lug	
050B	1	53110303 E 9	Hexagon Nut	
055B	1	200C118040	Spacer	
056B	1	200C118040	Spacer	
013G	1	200C105110	Chassis, H	
014G	3	200C101010	Support	

REF. DESIG.	Q'TY	PART NO.	DESCRIPTION	
015G	5	200C101020	Support	
016G	10	51102604A0	B.H.M. Screw	B2.6 $\times 4$
017G	1	200C160020	Bracket, EXT Speak	
018G	1	51400305P0	B.H. Tapped Screw	$B 3 \times 5$
022G	1	200C267010	Heatsink	
023G	2	51382608PO	P.H. Tapped Screw	P2.6 $\times 8$
024G	3	51042604AO	F.H.M. Screw	F2.6 $\times 4$
025G	4	51042604AO	F.H.M. Screw	F2.6 $\times 4$
026G	1	200C064310	Case, Battery Tray	
027G	2	51342605P0	F.H. Tapped Screw	F2.6 $\times 5$
028G	2	200C123110	Contactor	
029G	2	51342605P0	F.H. Tapped Screw	F2.6 $\times 5$
030G	1	200C120040	Insulator	
032G	1	200C101030	Support	
033G	1	62030039W0	Lug, Ear Jack	
035G	1	200C118030	Spacer	
039G	1	203C118020	Spacer	
040G	1	200C064040	Case, Battery (6)	
041G	1	200C064050	Case, Battery (4)	
042G	1	200C121010	Link, Dummy	
043G	1	200C118020	Spacer	
046G	2	51342605P0	F.H. Tapped Screw	F2.6 $\times 5$
048G	1	203C101010	Support	
051G	1	200C056050	Buffer	
054G	1	51042606A0	F.H.M. Screw	F2.6 $\times 6$
070G	1	200C053120	Cover	
075G	2	62261240WO	Lug	
076G	1	1210005010	Lug	
077G	1	51042604AO	F.H.M. Screw	F 2.6×4
078G	1	53112603E0	Hexagon Nut 2.6	
090G	1	200C053040	Buffer	

$\begin{gathered} \text { REF. } \\ \text { DESIG. } \end{gathered}$	Q'TY	PART NO.	DESCRIPTION	
092G	1	62030039W0	Lug	
093G	1	51042605AO	F.H.M. Screw F	F2.6× 5
094G	1	53112603E0	Hexason Nut 2	2.6
151G		203C056010	Buffer	
150G	1	51100205A0	B.H.M. Screw B	B2 $\times 5$
001R	1	200C861110	Label, Battery Ind.	
002R	1	203C861110	Label, Test Point	
010F	1	203C109010	Shield	
011F	1	203C109040	Shield	
012F	1	203C109060	Shield	
013F	1	4723109240	Shield	
014F	1	4723120020	Insulator	
015F	1	1143259010	Bushing	
020F	1	203C109020	Shield	
021F	1	203C109030	Shield	
022F	2	51282605B0	B.H. Tapped Screw B	82.6×5
025F	1	4724109120	Shield	
026F	1	4724109130	Shield	
027F	1	4724115010	Spring	
028F	2	4724161020	Ferric Core	
029F	2	51282606B0	B.H. Tapped Screw B	32.6×6
030F	2	4724275010	Bobin	
032F	1	200C267030	Heatsink	
035F	2	203C109070	Shield	
036F	1	203C109080	Shield	
037F	1	203C109090	Shield	
038F	1	4295120060	Insulator	
E801	1	QK00578010	Speaker, 57mm	
C804	1	EA10802530	Elect Cap. $1000 \mu \mathrm{~F}$	F 25 V

REF. DESIG.	Q'TV	PART NO.	DESCRIPTION
J803	1	YJ04000620	Jack, Charger
J804	1	YJ10000550	Jack, Antenna
J805	1	YJ01000570	Jack, EXT SP.
Q804	1	HD20001100	Diode 10D-2
QT04	1	HT32283100	Transistor 2SC2283
WW02	1	YB01001170	Connective Cord
WW03	1	YB01001180	Connective Cord
WW04	1	YB01001190	Connective Cord
WW05	1	YB01001202	Connective Cord
WW06	1	YB01001210	Connective Cord
WW07	1	YB01001220	Connective Cord
WW08	1	YB01001230	Connective Cord
WW09	1	YB01001240	Connective Cord
WW10	1	YB01001250	Connective Cord
WW11	1	YB01001260	Connective Cord
WW12	1	YB01001272	Connective Cord
W101	1	YB01001300	Connective Cord
W102	1	YB01001310	Connective Cord

REF. DESIG.	O'TY	PART NO.	DESCRIPTION
001 T	1	203C851010	Instructions
002T	1	203C856020	Circuit Diagram
001 u	1	203C804020	Packing Case
002U	1	9012035010	Polyethylene Bag
003 U	1	200C809010	Cushion
004 U	1	200C803010	Partitioner
005 U	1	203C505020	Master Carton
006 U	3	9523019010	Serial No. Card

$\begin{gathered} \text { REF. } \\ \text { DESIG. } \end{gathered}$	Q'TY	PART NO.	DESCRIPTION
001Z	1	4223156010	Strap
002Z	2	200C155500	Hanger, (K)
005Z	1	200C155020	Hanger, Mic
006Z	1	9011020010	Polyethylene Bag
$007 Z$	1	9010510010	Polyethylene Bag
0082	1	200 C 551130	Instructions
Z001	1	YR01010020	Whip Antenna
Z002	1	YP01000310	Plug, Non Short
2003	1	MP11000690	Microphone

REF. DESIG.	Q'TY	PART NO.	DESCRIPTION			
CS11	1	DK16102300	Ceramic	$0.001 \mu \mathrm{~F}$	$\pm 10 \%$	
CS12	1	EJ10601610	Elect	$10 \mu \mathrm{~F}$		16 V
CS13	1	DK16102300	Ceramic	$0.001 \mu \mathrm{~F}$	$\pm 10 \%$	
CS14	1	EA47601630	Elect	$47 \mu \mathrm{~F}$		16 V
C101	1	DD10050300	Ceramic	5 pF	$\pm 0.25 \mathrm{pF}$	
C102	1	DD10030300	Ceramic	3 pF	$\pm 0.25 \mathrm{pF}$	
C103	1	DK16102300	Ceramic	$0.001 \mu \mathrm{~F}$	$\pm 10 \%$	
C104	1	EJ10601610	Elect	$10 \mu \mathrm{~F}$		16 V
C105	1	DD15151370	Ceramic	150pF	$\pm 5 \%$	
C106	1	DD15151370	Ceramic	150pF	$\pm 5 \%$	
C107	- 1	DD15101350	Ceramic	100pF	$\pm 5 \%$	
C108	1	DD15101350	Ceramic	100pF	$\pm 5 \%$	
C109	1	DK18103310	Ceramic	$0.01 \mu \mathrm{~F}$		
C110	1	DK16122300	Ceramic	1200pF	$\pm 10 \%$	
C111	1	DK16102300	Ceramic	$0.001 \mu \mathrm{~F}$	$\pm 10 \%$.	
C112	1	EV10601660	Elect	$10 \mu \mathrm{~F}$		16 V
C113	1	DD15390300	Ceramic	39pF	$\pm 5 \%$	
C114	1	DD15150300	Ceramic	15 pF	$\pm 5 \%$	
C115	1	CT12000090	Trimming	20pF		
C116	1	EV22601060	Elect	$22 \mu \mathrm{~F}$		10 V
C117	1	EV47501060	Elect	$4.7 \mu \mathrm{~F}$		10 V
C118	1	EV10403560	Elect	$0.1 \mu \mathrm{~F}$		35 V
C119	1	DK16102300	Ceramic	$0.001 \mu \mathrm{~F}$	$\pm 10 \%$	
C120	1	DK16102300	Ceramic	$0.001 \mu \mathrm{~F}$	$\pm 10 \%$	
C121	1	EV22601660	Elect	$22 \mu \mathrm{~F}$		16 V
C122	1	DK18102030	Ceramic	$0.001 \mu \mathrm{~F}$		
C123	1	EV47403560	Elect	$0.47 \mu \mathrm{~F}$		35 V
C124	1	DK16102300	Ceramic	$0.001 \mu \mathrm{~F}$	$\pm 10 \%$	
C125	1	DK16102300	Ceramic	$0.001 \mu \mathrm{~F}$	$\pm 10 \%$	
CS15	1	DK16102300	Ceramic	$0.001 \mu \mathrm{~F}$	$\pm 10 \%$	
CS16	1	EV47501060	Elect.	$4.7 \mu \mathrm{~F}$		10 V

$\begin{gathered} \text { REF. } \\ \text { DESIG. } \end{gathered}$	Q'TY	PART NO.	DESCRIPTION			$\begin{aligned} & \text { REF. } \\ & \text { DESIG. } \end{aligned}$	Q'TY	PART NO.	DESCRIPTION			
C126	1	DD10050300	Ceramic	5pF	$\pm 0.25 \mathrm{pF}$	C310	1	CT11000020	Trimming	g 10 pF		
C127	1	DK16102300	Ceramic	$0.001 \mu \mathrm{~F}$	$\pm 10 \%$	C311	1	DD10040300	Ceramic	4 pF	$\pm 0.25 \mathrm{pF}$	
C128	1	DD15430300	Ceramic	43pF	$\pm 5 \%$							
C130	1	DK16102300	Ceramic	$0.001 \mu \mathrm{~F}$	$\pm 10 \%$	C312	1	CT11000020	Trimming	g 10pF		
C131	1	CT10600090	Trimming	g 6 p		C315	1	DK18103310	Ceramic	$0.01 \mu \mathrm{~F}$		
C132	1	DK17102010	Ceramic	$0.001 \mu \mathrm{~F}$	$\pm 20 \%$	C316	1	DK18103310	Ceramic	$0.01 \mu \mathrm{~F}$		
C133	1	DD10050300	Ceramic	5pF	$\pm 0.25 \mathrm{pF}$	C317	1	DD15101050	Ceramic	100pF	$\pm 5 \%$	
C134	1	DK16102300	Ceramic	$0.001 \mu \mathrm{~F}$	$\pm 10 \%$	C318	1	DD15620010	Ceramic	62pF	$\pm 5 \%$	
C135	1	EJ10405010	Elect	$0.1 \mu \mathrm{~F}$	$\pm 5 \%$	C319	1	DK18103310	Ceramic	$0.01 \mu \mathrm{~F}$		
C136	1	DD15240300	Ceramic	24 pF		C320	1	DK18103310	Ceramic	$0.01 \mu \mathrm{~F}$		
						C321	1	DD10015300	Ceramic	1.5pF	$\pm 0.25 \mathrm{pF}$	
C137	1	DD15200300	Ceramic	20pF	$\pm 5 \%$	C322	1	EA10602530	Elect	$10 \mu \mathrm{~F}$	-0.25p	25 V
C138	1	DK16102300	Ceramic	$0.001 \mu \mathrm{~F}$	$\pm 10 \%$	C323	1	DK16102300	Ceramic	$0.001 \mu \mathrm{~F}$	$\pm 10 \%$	
C139	1	DD15470370	Ceramic	47pF	$\pm 5 \%$							
C140	1	DK16102300	Ceramic	$0.001 \mu \mathrm{~F}$	$\pm 10 \%$	C324	1	DD10020300	Ceramic	2 pF	$\pm 0.25 \mathrm{pF}$	
C141	1	DK16102300	Ceramic	$0.001 \mu \mathrm{~F}$	$\pm 10 \%$	C325	1	DD10020300	Ceramic	2 pF	$\pm 0.25 \mathrm{pF}$	
C142	1	DK16102300	Ceramic	$0.001 \mu \mathrm{~F}$	$\pm 10 \%$	C401	1	DK16102300	Ceramic	$0.001 \mu \mathrm{~F}$	$\pm 10 \%$	
C143	1	EJ10405010	Elect	$0.1 \mu \mathrm{~F}$	$\pm 5 \%$ 50	C402	1	EJ22505010	Elect	$2.2 \mu \mathrm{~F}$		50 V
C144	1	DD15160300	Ceramic	16pF		C403	1	EV10403560	Elect	$0.1 \mu \mathrm{~F}$		35 V
C145	1	DD15180300	Ceramic	18pF	$\pm 5 \%$	C404	1	EJ22505010	Elect	$2.2 \mu \mathrm{~F}$		50 V
C146	1	DD15470370	Ceramic	47pF	$\pm 5 \%$	C405	1	DK16471300	Ceramic	470pF	$\pm 10 \%$	
C147	1	DD10020300	Ceramic	2 pF	$\pm 0.25 \mathrm{pF}$	C406	1	DK16471300	Ceramic	470pF	$\pm 10 \%$	
C148	1	DD10020300	Ceramic	2 pF	$\pm 0.25 \mathrm{pF}$	C407	1	EV22403560	Elect	$0.22 \mu \mathrm{~F}$		35 V
C149	1	DK18502010	Ceramic	$0.005 \mu \mathrm{~F}$		C408	1	DF16103300	Film	$0.01 \mu \mathrm{~F}$	$\pm 10 \%$	
C301	1	DK18103030	Ceramic	$0.01 \mu \mathrm{~F}$		C409	1					35 V
C302	1	DK18103030	Ceramic	$0.01 \mu \mathrm{~F}$		C410	1	DK16391300	Ceramic	$390 \mathrm{pF}$	$\begin{aligned} & \pm 20 \% \\ & \pm 10 \% \end{aligned}$	
C303	1	DK18103030	Ceramic	$0.01 \mu \mathrm{~F}$		C411	1	DF16472300	Film	4700pF	$\pm 10 \%$	
C305 C 306	1	DD10040300	Ceramic	4 pF	$\pm 0.25 \mathrm{pF}$	C412	1	DK16102300	Ceramic	$0.001 \mu \mathrm{~F}$	$\pm 10 \%$	
C306	1	CT11000020	Trimming Ceramic	10 pF 4 pF	+0.25pF	C413	1	DK16102300	Ceramic	$0.001 \mu \mathrm{~F}$	$\pm 10 \%$	
C308	1	CT11000020	Trimming	10 pF		C326	1	EV22403560	Elect.	$0.22 \mu \mathrm{~F}$		
C309	1	DD10040300	Ceramic	4 pF	$\pm 0.25 \mathrm{pF}$	C414	1	DK 16102300	Ceramic	$0.001 \mu \mathrm{~F}$	$\pm 10 \%$	

REF. DESIG.	Q'TY	PART NO.	DESCRIPTION	
			P101-RESISTO (All Resistors	ORS are $\pm 5 \%$ and $1 / 4 W$)
RL01	1	GD05103180	$10 \mathrm{~K} \Omega$	1/8W
RL02	1	GD05103180	$10 \mathrm{~K} \Omega$	1/8W
RL03	1	GD05822180	$8.2 \mathrm{~K} \Omega$	1/8W
RL04	1	GD05103180	$10 \mathrm{~K} \Omega$	1/8W
RL05	1	GD05103140	$10 \mathrm{~K} \Omega$	
RL06	1	RA01020330	$1 \mathrm{~K} \Omega(\mathrm{~B})$	Trimming
RL07	1	GD05272140	$2.7 \mathrm{~K} \Omega$	
RL08	1	GD05152140	$1.5 \mathrm{~K} \Omega$	
RL09	1	GD05333140	$33 \mathrm{~K} \Omega$	
RL10	1	GD05104140	$100 \mathrm{~K} \Omega$	
RL11	1	GD05393140	$39 \mathrm{~K} \Omega$	
RL12	1	GD05473140	$47 \mathrm{~K} \Omega$	
RL13	1	GD05472140	$4.7 \mathrm{~K} \Omega$	
RL14	1	GD05563140	$56 \mathrm{~K} \Omega$	
RL15	1	GD05563180	$56 \mathrm{~K} \Omega$ $56 \mathrm{~K} \Omega$	1/8W
RL16	1	GD05563180	$56 \mathrm{~K} \Omega$	
RS01	1	GD05333140	$33 \mathrm{~K} \Omega$	
RS02	1	GD05332140	$3.3 \mathrm{~K} \Omega$	
RS03	1	GD05103140	$10 \mathrm{~K} \Omega$	
RS04	1	GD05102140	$1 \mathrm{~K} \Omega$	
RS05	1	GD05103140	$10 \mathrm{~K} \Omega$	
RS06	1	GD05682140	$6.8 \mathrm{~K} \Omega$	
RS07	1	GD05392140	$3.9 \mathrm{~K} \Omega$	
RS08	1	GD05223140	$22 \mathrm{~K} \Omega$	
RS09	1	GD05474140	$470 \mathrm{~K} \Omega$	
RS10	1	GD05103140	$10 \mathrm{~K} \Omega$	
RS11	1	GD05103140	$10 \mathrm{~K} \Omega$	
RS12	1	GD05102140	$1 \mathrm{~K} \Omega$ $33 \mathrm{~K} \Omega$	
RS13	1	GD05333140	$33 \mathrm{~K} \Omega$	

REF.			
DESIG.	Q'TY	PART NO.	DESCRIPTION
R101	1	GD05104140	$100 \mathrm{~K} \Omega$
R102	1	GD05222140	$2.2 \mathrm{~K} \Omega$
R103	1	GD05101140	100Ω
R104	1	GD05224140	$220 \mathrm{~K} \Omega$
R105	1	GD05332140	$3.3 \mathrm{~K} \Omega$
R106	1	GD05823140	$82 \mathrm{~K} \Omega$
R107	1	GD05681140	680Ω
R108	1	GD05101140	100Ω
R109	1	GD05221140	220Ω
R110	1	GD05221140	220Ω
R111	1	GD05332140	$3.3 \mathrm{~K} \Omega$
R112	1	GD05822140	$8.2 \mathrm{~K} \Omega$
R113	1	RC00000140	0Ω
R114	1	GD05822140	$8.2 \mathrm{~K} \Omega$
R115	1	GD05272140	$2.7 \mathrm{~K} \Omega$
R116	1	RA04720120	$4.7 \mathrm{~K} \Omega$
R117	1	GD05273140	$27 \mathrm{~K} \Omega$
R118	1	GD05103140	$10 \mathrm{~K} \Omega$
R119	1	GD05224140	$220 \mathrm{~K} \Omega$
R120	1	GD05101140	100Ω
R121	1	GD05182140	$1.8 \mathrm{~K} \Omega$
R122	1	GD05472140	$4.7 \mathrm{~K} \Omega$
R123	1	GD05391140	390Ω
R124	1	GD05101140	100Ω
R125	1	GD05101140	100Ω
R127		1	GD05563140
R128	1	GD05103140	$56 K \Omega$
R129	1	GD05102140	$10 \mathrm{~K} \Omega$
R130	1	GD05470140	$1 \mathrm{~K} \Omega$
			47Ω

REF. DESIG.	Q'TY	PART NO.	DESCRIPTION	$\begin{aligned} & \text { REF. } \\ & \text { DESIG. } \end{aligned}$	Q'TY	PART NO.	DESCRIPTION
R131	1	GD05101140	100Ω	GL01	1	BW10563020	$56 \mathrm{~K} \Omega$ Resistor Compo.
R132	1	GD05681140	680Ω	GL02	1	BW10563020	$56 \mathrm{~K} \Omega$ Resistor Compo.
R133	1	GD05473140	$47 \mathrm{~K} \Omega$	GL03	1	BW10563020	$56 \mathrm{~K} \Omega$ Resistor Compo.
R134	1	RC00000140	0Ω	G101	1	BW10823010	$82 \mathrm{~K} \Omega$ 佰
R135	1	GD05027180	$2.7 \Omega \quad 1 / 8 \mathrm{~W}$	G102	1	BW10393010	$39 \mathrm{~K} \Omega$
R203	1	G D05222140	$2.2 \mathrm{~K} \Omega$				
R301	1	GD05182140	$1.8 \mathrm{~K} \Omega$				P101-SEMICONDUCTORS
R302	1	GD05182140	$1.8 \mathrm{~K} \Omega$	QL01	1	HC10041060	IC μ PD650C
R303	1	GD05182140	$1.8 \mathrm{~K} \Omega$	QL02	1	HC10014170	IC MC14011BCP
R305	1	GD05222140	$2.2 \mathrm{~K} \Omega$	QL03	1	HC10012170	IC MC14016BCP
R306	1	GD05222140	$2.2 \mathrm{~K} \Omega$	OL04	1	HD20011050	Diode 1S1555
R307	1	GD05152140	$1.5 \mathrm{~K} \Omega$	QL05	1	HD20011050	Diode 1S1555
R308	1	GD05471140	470Ω	QL06	1	HD20011050	Diode 1S1555
R309	1	GD05182140	$1.8 \mathrm{~K} \Omega$	QL07	1	HD20011050	Diode 1S1555
R310	1	GD05151140	150Ω	QL08	1	HD20011050	Diode 1S1555
R401	1	RA01020330	$1 \mathrm{~K} \Omega$ Trimming	QL09	1	HD20011050	Diode 1S1555
R402	1	GD05152140	$1.5 \mathrm{~K} \Omega$	QL10	1	HT305360F0	Transistor 2SC536F
R403	1	GD05472140	$4.7 \mathrm{~K} \Omega$	QL11	1	HD20011050	Diode 1S1555
R404	1	GD05472140	$4.7 \mathrm{~K} \Omega$	QL12	1	HD20011050	Diode 1S1555
R405	1	GD05334140	$330 \mathrm{~K} \Omega$				
R406	1	GD05472140	$4.7 \mathrm{~K} \Omega$	QS02 QS03	1	HT309451Q0 HD30077090	Transistor 2SC945(Q) Zener XZ062
R407	1	GD05153140	$15 \mathrm{~K} \Omega$	QS04	1	HD20011050	Diode 1S1555
R408	1	GD05104140	$100 \mathrm{~K} \Omega$	OS05	1	HD20011050	Diode 1S1555
R409	1	GD05105140	$1 \mathrm{M} \Omega$	QS06	1	HC10022060	IC $\quad \mu$ PC78L08
R410	1	GD05123140	$12 \mathrm{~K} \Omega$	QS07	1	HT10738180	Transistor 2SA738(B)
R411	1	GD05123140	$12 \mathrm{~K} \Omega$	QS08	1	HT10738180	Transistor 2SA738(B)
R412	1	GD05333140	$33 \mathrm{~K} \Omega$	QS09	1	HT30945100	Transistor 2SC945(Q)
R413	1	GD05822140	$8.2 \mathrm{~K} \Omega$	QS10	1	HT312131B0	Transistor 2SC1213(B)
R414	1	GD05822140	$8.2 \mathrm{~K} \Omega$	QS11	1	HD30078090	Zener XZ076
R415	1	GD05822140	$8.2 \mathrm{~K} \Omega$				
R416	1	RA01020330	$1 \mathrm{~K} \Omega$ Trimming				
R417	1	GD05473140	$47 \mathrm{~K} \Omega$				
R418	1	GD05103180	$10 \mathrm{~K} \Omega \quad 1 / 8 \mathrm{~W}$				

$\begin{gathered} \text { REF. } \\ \text { DESIG. } \end{gathered}$	Q'TY	PART NO.	DESCRIPTION
QS12	1	HT313681B0	Transistor 2SC1368(B)
QS13	1	HD30060090	Zener XZ090
OS14	1	HD20011050	Diode 1S1555
QS15	1	HT107381B0	Transistor 2SA738(B)
OS16	1	HT30945100	Transistor 2SC945(Q)
QS17	1	HD30033090	Zener WZ052
OS18	1	HD20011050	Diode 1S1555
QS19	1	HT30945100	Transistor 2SC945(Q)
OS20	1	HD30078090	Zener XZ076
QS21	1	HT30945100	Transistor 2SC945(0)
QS22	1	HD30077090	Zener XZ062
OS23	1	HD20011050	Diode 1S1555
QS24	1	HV00002060	Varistor VD1212
QS25	1	HD20011050	Diode IS1555
Q101	1	HT305351B0	Transistor 2SC535(B)
Q102	1	HT304601B0	Transistor 2SC460(B)
Q103	1	HT304601B0	Transistor 2SC460(B)
Q104	1	HV00002060	Varistor VD1212
Q105	1	HV00002060	Varistor VD1212
Q106	1	HV00002060	Varistor VD1212
Q107	1	HV00002060	Varistor VD1212
Q108	1	HV00002060	Varistor VD1212
Q109	1	HV00002060	Varistor VD1212
Q110	1	HV00002060	Varistor VD1212
Q111	1	HV00002060	Varistor VD1212
Q112	1	HV00002060	Varistor VD1212
Q113	1	HC10011170	IC MC145106P
Q114	1	HT30945100	Transistor 2SC945(Q)
Q115	1	HT107331R0	Transistor 2SA733(R)
0116	1	HD20011050	Diode 1S1555
0117	1	HT305351B0	Transistor 2SC535(B)

$\begin{gathered} \text { REF. } \\ \text { DESIG. } \end{gathered}$	Q'TY	PART NO.	DESCRIPTION
L101	1	LC14730050	Choke Coil, $47 \mu \mathrm{H}$
L102	1	LA70280030	Antenna Coil, VCO Buff.
L104	1	LC15000140	Choke Coil, 2T
L105	1	LC11020070	Choke Coil, $1 \mu \mathrm{H}$
L107	1	LM42518010	Twist Coil, 5T
L108	1	LA70260060	Antenna Coil, Cavity
L301	1	LC12230090	Choke Coil, $22 \mu \mathrm{H}$
L302	1	LC11220030	Choke Coil, $1.2 \mu \mathrm{H}$
L303	1	LC12230090	Choke Coil, $22 \mu \mathrm{H}$
L304	1	LC11220030	Choke Coil, $1.2 \mu \mathrm{H}$
L305	1	LC12230090	Choke Coil, $22 \mu \mathrm{H}$
L306	1	LC11220030	Choke Coil, $1.2 \mu \mathrm{H}$
L307	1	LC12230090	Choke Coil, $22 \mu \mathrm{H}$
L308	1	LC11220030	Choke Coil, $\quad 1.2 \mu \mathrm{H}$
L311	1	LC13940010	Choke Coil, $390 \mu \mathrm{H}$
L312	1	LC13940010	Choke Coil, $390 \mu \mathrm{H}$
L313	1	LC11020070	Choke Coil, $1 \mu \mathrm{H}$
L314	1	LA70280030	Antenna Coil, PLL Local OSC
L315	1	LA70280030	Antenna Coil, PLL Local OSC
L316	1	LC13940010	Choke Coil, $390 \mu \mathrm{H}$
SL01	1	SS01020340	Slide Switch, CH Step 20K-40K
SL02	1	SS01020340	Slide Switch, Back Up
W101	1	YB01001300	Connective Cord
W102	1	YB01001310	Connective Cord
$\times 101$	1	XY41024002	Crystal 10.24 MHz
$\times 301$	1	XB303007G2	Crystal 40.0825 MHz
$\times 302$	1	XB303008G2	Crystal 40.5825 MHz
$\times 303$	1	XB303009G2	Crystal 42.2225 MHz
X304	1	XB303010G2	Crystal 42.7225 MHz

REF. DESIG.	Q'TY	PART NO.	DESCRIPTION
P201	1	YF203C0010	P201-VCO CIRCUIT BOARD P.W. Board, VCO
			P201-CAPACITORS
C201	1	DD10020300	Ceramic 2pF $\pm 0.25 \mathrm{pF}$
C202	1	DD15330300	Ceramic 33pF $\pm 5 \%$
C203	1	DD10030300	Ceramic $\quad 3 \mathrm{pF} \pm 0.25 \mathrm{pF}$
C204	1	DD10010300	Ceramic $\quad 1 \mathrm{pF} \pm 0.25 \mathrm{pF}$
C205	1	DK16102300	Ceramic $0.001 \mu \mathrm{~F} \quad \pm 10 \%$
C206	1	DD15150300	Ceramic $\quad 15 \mathrm{pF} \quad \pm 5 \%$
C207	1	CT10600090	Trimming 6pF
C208	1	DD15240300	Ceramic $24 \mathrm{pF} \quad \pm 5 \%$
C209	1	DD11100300	Ceramic $\quad 10 \mathrm{pF} \quad \pm 0.5 \mathrm{pF}$
C210	1	DD11100300	Ceramic $\quad 10 \mathrm{pF} \quad \pm 0.5 \mathrm{pF}$
C211	1	DD15150300	Ceramic $\quad 15 \mathrm{pF} \quad \pm 5 \%$
C212	1	EV33501660	Elect $\quad 3.3 \mu \mathrm{~F} \quad 16 \mathrm{~V}$
C213	1	EJ10601610	Elect $\quad 10 \mu \mathrm{~F} \quad 16 \mathrm{~V}$
C251	1	DC18202020	Feedthru 2000pF
C 252	1	DC18202020	Feedthru 2000pF
C253	1	DC18202020	Feedthru 2000pF
C254	1	DC18202020	Feedthru 2000pF
C255	1	DC18202020	Feedthru 2000pF
			P201-RESISTORS (All Resistors are $\pm 5 \%$ and $1 / 4 \mathrm{~W}$)
R201	1	GD05103140	$10 \mathrm{~K} \Omega$
R202	1	GD05473140	$47 \mathrm{~K} \Omega$
R204	1	GD05101140	100Ω
R205	1	GD05104140	$100 \mathrm{~K} \Omega$
R206	1	GD05101140	100Ω
R207	1	GD05104140	$100 \mathrm{~K} \Omega$
R208	1	GD05560140	56Ω

REF.	Q'TY	PART NO.	DESCRIPTION			
CR01	1	DK16122300	Ceramic	1200pF	$\pm 10 \%$	
CR04	1	DD15470300	Ceramic	47pF	$\pm 5 \%$	
CR05	1	DK16122300	Ceramic	1200pF	$\pm 10 \%$	
CR06	1	DK18103310	Ceramic	$0.01 \mu \mathrm{~F}$		
CR07	1	CT10600090	Trimming	6 pF		
CR08	1	DK18103310	Ceramic	$0.01 \mu \mathrm{~F}$		
CR09	1	DS17223010	Semicon	$0.022 \mu \mathrm{~F}$	$\pm 20 \%$	
CR10	1	DS17223010	Semicon	$0.022 \mu \mathrm{~F}$	$\pm 20 \%$	
CR11	1	DS17223010	Semicon	$0.022 \mu \mathrm{~F}$	$\pm 20 \%$	
CR12	1	DD15101350	Ceramic	100pF	$\pm 5 \%$	
CR13	1	DK18103310	Ceramic	$0.01 \mu \mathrm{~F}$		
CR14	1	EV33601060	Elect	$33 \mu \mathrm{~F}$		10 V
CR15	1	DD15360300	Ceramic	36 pF	$\pm 5 \%$	
CR16	1	DD15560330	Ceramic	56pF	$\pm 5 \%$	
CR17	1	DS17223010	Semicon	$0.022 \mu \mathrm{~F}$	$\pm 20 \%$	
CR18	1	EJ10405010	Elect	$0.1 \mu \mathrm{~F}$		50 V
CR19	1	DD15430330	Ceramic	43pF	$\pm 5 \%$	
CR20	1	DD15120300	Ceramic	12pF	$\pm 5 \%$	
CR21	1	DK18103310	Ceramic	$0.01 \mu \mathrm{~F}$		
CR22	1	DS17152010	Semicon	1500pF	$\pm 20 \%$	
CR23	1	EV10503560	Elect	$1 \mu \mathrm{~F}$		35 V
CR24	1	EV10502560	Elect	$1 \mu \mathrm{~F}$		25 V
CR25	1	DF16153300	Film	$0.015 \mu \mathrm{~F}$	$\pm 10 \%$	
CR26	1	DS17473010	Semicon	$0.047 \mu \mathrm{~F}$	$\pm 20 \%$	
CR27	1	DS17332010	Semicon	3300pF	$\pm 20 \%$	
CR28	1	DK16471300	Ceramic	470pF	$\pm 10 \%$	
CR29	1	EJ10505010	Elect	$1 \mu \mathrm{~F}$		50 V
CR30	1	DK16102300	Ceramic	$0.001 \mu \mathrm{~F}$	$\pm 10 \%$	
CR31	1	DS17223010	Semicon	$0.022 \mu \mathrm{~F}$	$\pm 20 \%$	
CR32	1	DS17222010	Semicon	2200pF	$\pm 20 \%$	

REF. DESIG.	O'TY	PART NO.	DESCRIPTION			
CR33	1	DS17223010	Semicon	$0.022 \mu \mathrm{~F}$	$\pm 20 \%$	
CR34	1	DS17223010	Semicon	$0.022 \mu \mathrm{~F}$	$\pm 20 \%$	
CR35	1	DS17473010	Semicon	$0.047 \mu \mathrm{~F}$	$\pm 20 \%$	
CR36	1	DS17473010	Semicon	$0.047 \mu \mathrm{~F}$	$\pm 20 \%$	
CR37	1	EJ10603510	Elect	$10 \mu \mathrm{~F}$		35 V
CR38	1	DS17223010	Semicon	$0.022 \mu \mathrm{~F}$	$\pm 20 \%$	
CR39	1	DF16223300	Film	$0.022 \mu \mathrm{~F}$	$\pm 10 \%$	
CR40	1	EV10502560	Elect	$1 \mu \mathrm{~F}$		25 V
CR41	1	EA47601030	Elect	$47 \mu \mathrm{~F}$		10 V
CR42	1	DF16103300	Film	$0.01 \mu \mathrm{~F}$	$\pm 10 \%$	
CR43	1	EA47601630	Elect	$47 \mu \mathrm{~F}$		16 V
CR44	1	DF16103300	Film	$0.01 \mu \mathrm{~F}$	$\pm 10 \%$	
CR45	1	DK16331300	Ceramic	330pF	$\pm 10 \%$	
CR46	1	EV10403560	Elect	$0.1 \mu \mathrm{~F}$		35 V
CR47	1	EA22701030	Elect	$220 \mu \mathrm{~F}$		10 V
CR48	1	EV10403560	Elect	$0.1 \mu \mathrm{~F}$		35 V
CR49	1	EA22701630	Elect	$220 \mu \mathrm{~F}$		16 V
CR50	1	EA22601630	Elect	$22 \mu \mathrm{~F}$		16 V
CR51	1	EJ47502510	Elect	$4.7 \mu \mathrm{~F}$		25 V
CR52	1	EV10403560	Elect	$0.1 \mu \mathrm{~F}$		35 V
CR53	1	EV10403560	Elect	$0.1 \mu \mathrm{~F}$		35 V
CR54	1	DK18103310	Ceramic	$0.01 \mu \mathrm{~F}$		
CR55	1	DD10020300	Ceramic	2pF	$\pm 0.25 \mathrm{pF}$	
CR56	1	DF16104010	Film	$0.1 \mu \mathrm{~F}$	$\pm 10 \%$	
CR57	1	DD15470300	Ceramic	47pF	$\pm 5 \%$	
CR58	1	DD10020300	Ceramic	2pF	$\pm 0.25 \mathrm{pF}$	
CT01	1	DD15200300	Ceramic	20pF	$\pm 5 \%$	
CT02	1	DK18102030	Ceramic	$0.001 \mu \mathrm{~F}$		
CT03	1	DD15470370	Ceramic	47pF	$\pm 5 \%$	
CT04	1	DD15470370	Ceramic	47pF	$\pm 5 \%$	
CT05	1	DK18102030	Ceramic	$0.001 \mu \mathrm{~F}$		

REF. DESIG.	Q'TY	PART NO.	DESCRIPTION		
CT06	1	DK18102030	Ceramic	$0.001 \mu \mathrm{~F}$	
CT07	1	DD15470370	Ceramic	47pF	$\pm 5 \%$
CT08	1	DK18102030	Ceramic	$0.001 \mu \mathrm{~F}$	
CT09	1	CT11000020	Trimming	g 10pF	
CT10	1	DK18102030	Ceramic	$0.001 \mu \mathrm{~F}$	
CT11	1	DD15470370	Ceramic	47pF	$\pm 5 \%$
CT12	1	DK18102030	Ceramic	$0.001 \mu \mathrm{~F}$	
CT13	1	DD15470370	Ceramic	47pF	$\pm 5 \%$
CT14	1	DK18102030	Ceramic	$0.001 \mu \mathrm{~F}$	
CT15	1	CT11000020	Trimming	g 10 pF	
CT16	1	DK18102030	Ceramic	$0.001 \mu \mathrm{~F}$	
CT17	1	DD15470370	Ceramic	47pF	$\pm 5 \%$
CT18	1	EA22601630	Elect	$22 \mu \mathrm{~F}$	16V
CT19	1	DK18102030	Ceramic	$0.001 \mu \mathrm{~F}$	
CT20	1	DD15470370	Ceramic	47pF	$\pm 5 \%$
CT21	1	DD10020300	Ceramic	2 pF	$\pm 0.25 \mathrm{pF}$
CT22	1	CT11000020	Trimming	10pF	
CT23	1	CT11000020	Trimming	10 pF	
CT24	1	DD11070300	Ceramic	7 pF	$\pm 0.5 \mathrm{pF}$
CT25	1	DK18102030	Ceramic	$0.001 \mu \mathrm{~F}$	
CT26	1	DD15470370	Ceramic	47pF	$\pm 5 \%$
CT27	1	DK18102030	Ceramic	$0.001 \mu \mathrm{~F}$	
CT28	1	EA22602530	Elect	$22 \mu \mathrm{~F}$	25 V
CT29	1	DD10020300	Ceramic	2pF	$\pm 0.25 \mathrm{pF}$
CT30	1	CT11000020	Trimming	10 pF	
CT31 CT32	1	DD11070300	Ceramic	7pF	$\pm 0.5 \mathrm{pF}$
CT32 CT33	1	CT11000020	Trimming	10 pF	
CT33	1	DD10050300	Ceramic	5 pF	$\pm 0.25 \mathrm{pF}$
CT34	1	DK18102030	Ceramic 0	$0.001 \mu \mathrm{~F}$	
CT35	1	DK18102030	Ceramic	$0.001 \mu \mathrm{~F}$	
CT36	1	DK18102030	Ceramic 0	$0.001 \mu \mathrm{~F}$	

REF.			
DESIG.	Q'TV	PART NO.	DESCRIPTION
RR13	1	GD05101140	100Ω
RR15	1	GD05222140	$2.2 \mathrm{~K} \Omega$
RR16	1	GD05222140	$2.2 \mathrm{~K} \Omega$
RR17	1	GD05473140	$47 \mathrm{~K} \Omega$
RR18	1	GD05123140	$12 \mathrm{~K} \Omega$
RR19	1	GD05103140	$10 \mathrm{~K} \Omega$
RR20	1	GD05103140	$10 \mathrm{~K} \Omega$
RR21	1	GD05103140	$10 \mathrm{~K} \Omega$
RR22	1	GD05224140	$220 \mathrm{~K} \Omega$
RR23	1	GD05392140	$3.9 \mathrm{~K} \Omega$
RR24	1	GD05562140	$5.6 \mathrm{~K} \Omega$
RR25	1	GD05103140	$10 \mathrm{~K} \Omega$
RR26	1	GD05823140	$82 \mathrm{~K} \Omega$
RR27	1	GD05222140	$2.2 \mathrm{~K} \Omega$
RR28	1	GD05104140	$100 \mathrm{~K} \Omega$
RR29	1	GD05334140	$330 \mathrm{~K} \Omega$
RR30	1	GD05471140	470Ω
RR31	1	GD05222140	$2.2 \mathrm{~K} \Omega$
RR32	1	GD05471140	470Ω
RR33	1	RA02230090	$22 \mathrm{~K} \Omega$
RR34	1	GD05333140	$33 \mathrm{~K} \Omega$
RR35	1	GD05273140	$27 \mathrm{~K} \Omega$
RR36	1	GD05333140	$33 \mathrm{~K} \Omega$
RR37	1	GD05822140	$8.2 \mathrm{~K} \Omega$
RR38	1	RA04720120	$4.7 \mathrm{~K} \Omega$
RR39	1	GD05822140	$8.2 \mathrm{~K} \Omega$
RR40	1	GD05103140	$10 \mathrm{~K} \Omega$
RR41	1	GD05223140	$22 \mathrm{~K} \Omega$
RR42	1	GD05223140	$22 \mathrm{~K} \Omega$

REF. DESIG.	Q'TY	PART NO.	DESCRIPTION
RR43	1	GD05104140	$100 \mathrm{~K} \Omega$
RR44	1	GD05102140	$1 \mathrm{~K} \Omega$
RR45	1	GD05391140	390Ω
RR46	1	GD05153140	$15 \mathrm{~K} \Omega$
RR47	1	GD05393140	$39 \mathrm{~K} \Omega$
RR48	1	GD05224140	$220 \mathrm{~K} \Omega$
RR49	1	GD05103140	$10 \mathrm{~K} \Omega$
RR50	1	GD05103140	$10 \mathrm{~K} \Omega$
RR51	1	RA02230090	$22 \mathrm{~K} \Omega$
RR52	1	GD05103140	$10 \mathrm{~K} \Omega$
RR53	1	GD0518214ing	
RR54	1	RC00000140	$1.8 \mathrm{~K} \Omega$
RR55	1	GD05105140	0Ω
RR56	1	GD05332140	$3.3 \mathrm{~K} \Omega$
RR57	1	GD05104140	$100 \mathrm{~K} \Omega$
RR58	1	GD05332140	$3.3 \mathrm{~K} \Omega$
RR59	1	GD05102140	$1 \mathrm{~K} \Omega$
RR60	1	RC00000140	0Ω
RR61	1	GD05103140	$10 \mathrm{~K} \Omega$
RR62	1	GD05151140	150Ω
RT01	1	GD05682140	$6.8 \mathrm{~K} \Omega$
RT02	1	GD05152140	$1.5 \mathrm{~K} \Omega$
RT03	1	GD05472140	$4.7 \mathrm{~K} \Omega$
RT04	1	GD05472140	$4.7 \mathrm{~K} \Omega$
RT05	1	GD05122140	$1.2 \mathrm{~K} \Omega$
RT06	1	GD05332140	$3.3 \mathrm{~K} \Omega$
RT07	1	GD05821140	820Ω
RT08	1	GD05220140	220Ω
RT09	1	GD05221140	220Ω
RT10	1	GD05332140	$3.3 \mathrm{~K} \Omega$
RT11			GD05821140
RT12	1	GD05150140	820Ω
			150Ω

$\begin{gathered} \text { REF. } \\ \text { DESIG. } \end{gathered}$	Q'TV	PART NO.	DESCRIPTION
RT13	1	GD05221140	220Ω
RT14	1	GD05821140	820Ω
RT15	1	GD05680140	68Ω
RT16	1	GD05101140	100Ω
RT17	1	GD05561140	560Ω
RT18	1	GD05222140	$2.2 \mathrm{~K} \Omega$
RT19	1	GD05102140	$1 \mathrm{~K} \Omega$
RT20	1	RA04720120	$4.7 \mathrm{~K} \Omega$ Trimming
RT21	1	GD05271140	270Ω
RT22	1	GD05152140	$1.5 \mathrm{~K} \Omega$
RT23	1	GD05102140	$1 \mathrm{~K} \Omega$
RT24	1	GD05151180	$150 \Omega 1 / 8 \mathrm{~W}$
			P301-SEMICONDUCTORS
QF02	1	HF20001200 HF20001200	Diode MI301
QF03	1	HD10005020	$\begin{array}{ll}\text { Diode } \\ \text { Diode } & \text { MI301 } \\ \text { OA99 }\end{array}$
QR01	1	HF40048100	F.E.T. 3SK48
QR02	1	HF40048100	F.E.T. 3SK48
QR03	1	HT304601B0	Transistor 2SC460(B)
QR04	1	HT30945100	Transistor 2SC945(Q)
QR05	1	HT309451Q0	Transistor 2SC945(Q)
QR06	1	HT309001E0	Transistor 2SC900(E)
QR07	1	HT309451Q0	Transistor 2SC945(Q)
QR08	1	HT309451Q0	Transistor 2SC945(Q)
QR09	1	HT10733100	Transistor 2SA733(Q)
OR10	1	HC10015170	IC MC3357-P
QR11	1	HC10037060	IC $\quad \mu \mathrm{PC} 575 \mathrm{C} 2$
QR12	1	HC10013170	IC MC14001CP
QR20	1	HD10005020	Diode OA99
QR21	1	HD10005020	Diode OA99
QR22	1	HD10005020	Diode OA99

$\begin{aligned} & \text { REF. } \\ & \text { DESIG. } \end{aligned}$	Q'TY	PART NO.	DESCRIPTION
QR23	1	HD10005020	Diode OA99
QR24	1	HD20011050	Diode 1S1555
QR25	1	HD20011050	Diode 1S1555
QR26	1	HD20011050	Diode 1S1555
QR28	1	HD20011050	Diode 1S1555
QR29	1	HD30029090	Zener WZ090
QR30	1	HD20011050	Diode IS1555
QR31	1	HD20011050	Diode IS1555
QR32	1	HD20011050	Diode IS1555
QT01	1	HF40070100	F.E.T. 3SK70
QT02	1	HT32407100	Transistor 2SC2407
Qт03	1	HT32644000	Transistor 2SC2644
От04	1	HT32283100	Transistor 2SC2283
От05	1	HT106731B0	Transistor 2SA673(B)
От06	1	HT30945100	Transistor 2SC945(Q)
QT07	1	HC10022060	IC $\quad \mu$ PC78L08
QT08	1	HT10738180	Transistor 2SA738(B)
Qт09	1	HD10005020	Diode 01399
QT11	1	HD20005060	Diode 1SS16
QT12	1	HD20005060	Diode 1SS16 P301-MISCELLANEOUS
FR01	1	XU421400M5	Crystal 21.4 MHz
FR02	1	FG455304E0	Ceramic Filter CFU455B
FR03	1	FG455304E0	Ceramic Filter CFU455B
FT01	1	FC90050010	Ferrite Core
JF02	'1	Y J07000430	Jack (3P)
JR01	1	Y J07000360	Jack
JR02	1	Y J07000430	Jack (3P)
JR03	1	Y J07000470	Jack (7P)
JR04	1	Y J07000460	Jack (6P)
JT01 JT02	1 1	Y J07000360 Y J07000440	Jack (4P)

REF. DESIG.	Q'TY	PART NO.	DESCRIPTION
LF01	1	LC15000110	Choke Coil, 2T
LF02	1	LC15000110	Choke Coil, 2T
LF03	1	LC15000110	Choke Coil, 2 T
LR03	1	LA70260070	Antenna Coil
LR04	1	LC15000110	Choke Coil, 2T
LR05	1	LI70280020	I.F.T. Coil, 21.4 MHz
LR06	1	LI70280020	I.F.T. Coil, 21.4 MHz
LR07	1	LI70280010	I.F.T. Coil, 21.4 MHz
LR08	1	LI71016090	I.F.T. Coil, 455 KHz
LR09	1	LC24760010	Choke Coil, 4.7 mH
LT01	1	LM42417010	Twist Coil, 1-4
LT02	1	LM42417010	Twist Coil, 1-4
LT03	1	LC12010012	Choke Coil, 8 T
LT04	1	LM42518010	Twist Coil, 5 T
LT05	1	LC12010012	Choke Coil, 8T
LT06	1	LC15000110	Choke Coil, 2T
LT07	1	LM42518010	Twist Coil, 5T
LT08	1	LC12010012	Choke Coil, 8T
LT10	1	LM42518010	Twist Coil, 5T
LT11	1	LC12010012	Choke Coil, 8T
LT12	1	LC15000110	Choke Coil, 2T
LT13	1	LC13320070	Choke Coil, $3.3 \mu \mathrm{H}$
LT14	1	LC15000110	Choke Coil, 2T
LT15	1	LA70260060	Antenna Coil
LT17	1	LC12010012	Choke Coil, 8T
LT18	1	LC12010012	Choke Coil, 8T
LT19	1	LC12010012	Choke Coil, 8T
LT20	1	LC12010012	Choke Coil, ${ }^{8 T}$
$\times \mathrm{R01}$	1	XZ42094505	Crystal 20.945 MHz

8. SPECIFICATIONS

1. General Specifications Frequency: \qquad , 4
Type of emission: \qquad F3
icrophone inp
\qquad 600Ω
Speaker impedance
perating supply
voltage range: \qquad
Normal power supply: External: \qquad 9.6 ~ 16V DC Internal: 13.8V DC 1. UM-3 Ni-Cad battery $\times 10$
2. UM-3 dry cell $\times 9$
Dimensions: ... $129(\mathrm{~W}) \times 52(\mathrm{H}) \times 190.5$
Weight: \qquad (D) mm

Power batteries)
Power consumption: Reception standby: 25 mA with battery saver ON
Transmission:
600 mA (at 1 watt into 50Ω load)
2. Reception Specifications

Reception system: Double superheterodyne Intermediate: 1st IF: 21.4 MHz $\begin{array}{ll}\text { 1st IF: } & 21.4 \mathrm{MH} \\ \text { 2nd IF: } & 455 \mathrm{kHz}\end{array}$ 2nd IF: 455 kHz
$-5 \mathrm{~dB}(20 \mathrm{~dB} \mathrm{OS})$ $-5 \mathrm{~dB}(20 \mathrm{~dB}$ QS)
$-7 \mathrm{~dB}(12 \mathrm{~dB}$ SINAD) -7 dB (12d
$\pm 7.5 \mathrm{kHz}$
Pass bandwidth
Selectivity:

Better than 60dB

-14dB
0.7 watt (into 8 ohms with 10% THD)
Load impedance:
8Ω
3. Transmission Specification

Load impedance:
Load impedance:
50Ω
Maximum frequency
deviation:
Modulation:
$\pm 5 \mathrm{kHz}$ Reactance Reactance modulation Audio frequency response: $\quad 300 \sim 3000 \mathrm{~Hz}$

* These specifications are subject to change without notice in the event of improvements.

ACCESSORIES

- Hand-held microphone with UP-DOWN
\qquad
- Shoulder belt... \qquad
- External power plug
- Instructions manual
- Schematic diagram

				a の $\frac{0^{\prime}}{a}$
$\begin{aligned} & 0 \\ & 2 \\ & 1 \\ & \vdots \\ & \vdots \end{aligned}$				$\begin{aligned} & \circ \\ & \stackrel{\circ}{\circ} \\ & \frac{0}{\circ} \\ & \frac{0}{2} \\ & \frac{1}{2} \end{aligned}$
$\stackrel{\rightharpoonup}{\bullet}$	- - - - -	- - -	-r-r-r-	-
		$\underset{\sim}{\top} \underset{\sim}{\top} \underset{\sim}{N} \underset{\sim}{N}$		$\bar{\square}$

(W01-99)	Assembly and Wiring
(T01-99)	Adjustment
(X01-00)	Correction

